ﻻ يوجد ملخص باللغة العربية
The total mass of a distant star cluster is often derived from the virial theorem, using line-of-sight velocity dispersion measurements and half-light radii, under the implicit assumption that all stars are single (although it is known that most stars form part of binary systems). The components of binary stars exhibit orbital motion, which increases the measured velocity dispersion, resulting in a dynamical mass overestimation. In this article we quantify the effect of neglecting the binary population on the derivation of the dynamical mass of a star cluster. We find that the presence of binaries plays an important role for clusters with total mass M < 10^5 Msun; the dynamical mass can be significantly overestimated (by a factor of two or more). For the more massive clusters, with Mcl > 10^5 Msun, binaries do not affect the dynamical mass estimation significantly, provided that the cluster is significantly compact (half-mass radius < 5 pc).
The total mass of distant star clusters is often derived from the virial theorem, using line-of-sight velocity dispersion measurements and half-light radii. Although most stars form in binary systems, this is mostly ignored when interpreting the obse
Observations of young star-forming regions suggest that star clusters are born completely mass segregated. These initial conditions are, however, gradually lost as the star cluster evolves dynamically. For star clusters with single stars only and a c
The dynamical mass of a star cluster can be derived from the virial theorem, using the measured half-mass radius and line-of-sight velocity dispersion of the cluster. However, this dynamical mass may be a significant overestimation of the cluster mas
We summarize and discuss recent work (Fregeau 2007) that presents the confluence of three results suggesting that most Galactic globular clusters are still in the process of core contraction, and have not yet reached the thermal equilibrium phase dri
We highlight the impact of cluster-mass-dependent evolutionary rates upon the evolution of the cluster mass function during violent relaxation, that is, while clusters dynamically respond to the expulsion of their residual star-forming gas. Mass-depe