ترغب بنشر مسار تعليمي؟ اضغط هنا

Pseudodifferential multi-product representation of the solution operator of a parabolic equation

45   0   0.0 ( 0 )
 نشر من قبل Jerome Le Rousseau
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

By using a time slicing procedure, we represent the solution operator of a second-order parabolic pseudodifferential equation on $R^n$ as an infinite product of zero-order pseudodifferential operators. A similar representation formula is proven for parabolic differential equations on a compact Riemannian manifold. Each operator in the multi-product is given by a simple explicit Ansatz. The proof is based on an effective use of the Weyl calculus and the Fefferman-Phong inequality.


قيم البحث

اقرأ أيضاً

74 - Michael L. Wall 2020
We provide an exact construction of interaction Hamiltonians on a one-dimensional lattice which grow as a polynomial multiplied by an exponential with the lattice site separation as a matrix product operator (MPO), a type of one-dimensional tensor ne twork. We show that the bond dimension is $(k+3)$ for a polynomial of order $k$, independent of the system size and the number of particles. Our construction is manifestly translationally invariant, and so may be used in finite- or infinite-size variational matrix product state algorithms. Our results provide new insight into the correlation structure of many-body quantum operators, and may also be practical in simulations of many-body systems whose interactions are exponentially screened at large distances, but may have complex short-distance structure.
In this paper we introduce a model describing diffusion of species by a suitable regularization of a forward-backward parabolic equation. In particular, we prove existence and uniqueness of solutions, as well as continuous dependence on data, for a s ystem of partial differential equations and inclusion, which may be interpreted, e.g., as evolving equation for physical quantities such as concentration and chemical potential. The model deals with a constant mobility and it is recovered from a possibly non-convex free-energy density. In particular, we render a general viscous regularization via a maximal monotone graph acting on the time derivative of the concentration and presenting a strong coerciveness property.
142 - Kin Ming Hui 2010
Let $Omegasubsetmathbb{R}^n$ be a $C^2$ bounded domain and $chi>0$ be a constant. We will prove the existence of constants $lambda_Ngelambda_N^{ast}gelambda^{ast}(1+chiint_{Omega}frac{dx}{1-w_{ast}})^2$ for the nonlocal MEMS equation $-Delta v=lam/(1 -v)^2(1+chiint_{Omega}1/(1-v)dx)^2$ in $Omega$, $v=0$ on $1Omega$, such that a solution exists for any $0lelambda<lambda_N^{ast}$ and no solution exists for any $lambda>lambda_N$ where $lambda^{ast}$ is the pull-in voltage and $w_{ast}$ is the limit of the minimal solution of $-Delta v=lam/(1-v)^2$ in $Omega$ with $v=0$ on $1Omega$ as $lambda earrow lambda^{ast}$. We will prove the existence, uniqueness and asymptotic behaviour of the global solution of the corresponding parabolic nonlocal MEMS equation under various boundedness conditions on $lambda$. We also obtain the quenching behaviour of the solution of the parabolic nonlocal MEMS equation when $lambda$ is large.
In quantitative genetics, viscosity solutions of Hamilton-Jacobi equations appear naturally in the asymptotic limit of selection-mutation models when the population variance vanishes. They have to be solved together with an unknown function I(t) that arises as the counterpart of a non-negativity constraint on the solution at each time. Although the uniqueness of viscosity solutions is known for many variants of Hamilton-Jacobi equations, the uniqueness for this particular type of constrained problem was not resolved, except in a few particular cases. Here, we provide a general answer to the uniqueness problem, based on three main assumptions: convexity of the Hamiltonian function H(I, x, p) with respect to p, monotonicity of H with respect to I, and BV regularity of I(t).
228 - A.V. Shanin , A.I. Korolkov 2017
A problem of diffraction by an elongated body of revolution is studied. The incident wave falls along the axis. The wavelength is small comparatively to the dimensions of the body. The parabolic equation of the diffraction theory is used to describe the diffraction process. A boundary integral equation is derived. The integral equation is solved analytically and by iterations for diffraction by a cone.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا