ترغب بنشر مسار تعليمي؟ اضغط هنا

A non-smooth regularization of a forward-backward parabolic equation

88   0   0.0 ( 0 )
 نشر من قبل Pierluigi Colli
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we introduce a model describing diffusion of species by a suitable regularization of a forward-backward parabolic equation. In particular, we prove existence and uniqueness of solutions, as well as continuous dependence on data, for a system of partial differential equations and inclusion, which may be interpreted, e.g., as evolving equation for physical quantities such as concentration and chemical potential. The model deals with a constant mobility and it is recovered from a possibly non-convex free-energy density. In particular, we render a general viscous regularization via a maximal monotone graph acting on the time derivative of the concentration and presenting a strong coerciveness property.



قيم البحث

اقرأ أيضاً

We study the local in time existence of a regular solution of a nonlinear parabolic backward-forward system arising from the theory of Mean-Field Games (briefly MFG). The proof is based on a contraction argument in a suitable space that takes account of the peculiar structure of the system, which involves also a coupling at the final horizon. We apply the result to obtain existence to very general MFG models, including also congestion problems.
In this paper we study the asymptotic behavior of solutions for a non-local non-autonomous scalar quasilinear parabolic problem in one space dimension. Our aim is to give a fairly complete description of the the forwards asymptotic behavior of soluti ons for models with Kirchoff type diffusion. In the autonomous we use the gradient structure of the model, some symmetry properties of solutions and develop comparison results to obtain a sequence of bifurcations of equilibria analogous to that seen in the model with local diffusivity. We give conditions so that the autonomous problem admits at most one positive equilibrium and analyse the existence of sign changing equilibria. Also using symmetry and our comparison results we construct what is called non-autonomous equilibria to describe part of the asymptotics of the associated non-autonomous non-local parabolic problem.
We study the Cauchy problem with periodic initial data for the forward-backward heat equation defined by the J-self-adjoint linear operator L depending on a small parameter. The problem has been originated from the lubrication approximation of a visc ous fluid film on the inner surface of the rotating cylinder. For a certain range of the parameter we rigorously prove the conjecture, based on the numerical evidence, that the set of eigenvectors of the operator $L$ does not form a Riesz basis in $L^2 (-pi,pi)$. Our method can be applied to a wide range of the evolutional problems given by $PT-$symmetric operators.
In this paper we examine spectral properties of a family of periodic singular Sturm-Liouville problems which are highly non-self-adjoint but have purely real spectrum. The problem originated from the study of the lubrication approximation of a viscou s fluid film in the inner surface of a rotating cylinder and has received a substantial amount of attention in recent years. Our main focus will be the determination of Schatten class inclusions for the resolvent operator and regularity properties of the associated evolution equation.
In many signal processing applications, the aim is to reconstruct a signal that has a simple representation with respect to a certain basis or frame. Fundamental elements of the basis known as atoms allow us to define atomic norms that can be used to formulate convex regularizations for the reconstruction problem. Efficient algorithms are available to solve these formulations in certain special cases, but an approach that works well for general atomic norms, both in terms of speed and reconstruction accuracy, remains to be found. This paper describes an optimization algorithm called CoGEnT that produces solutions with succinct atomic representations for reconstruction problems, generally formulated with atomic-norm constraints. CoGEnT combines a greedy selection scheme based on the conditional gradient approach with a backward (or truncation) step that exploits the quadratic nature of the objective to reduce the basis size. We establish convergence properties and validate the algorithm via extensive numerical experiments on a suite of signal processing applications. Our algorithm and analysis also allow for inexact forward steps and for occasional enhancements of the current representation to be performed. CoGEnT can outperform the basic conditional gradient method, and indeed many methods that are tailored to specific applications, when the enhancement and truncation steps are defined appropriately. We also introduce several novel applications that are enabled by the atomic-norm framework, including tensor completion, moment problems in signal processing, and graph deconvolution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا