ترغب بنشر مسار تعليمي؟ اضغط هنا

Non thermal emission in clusters of galaxies

68   0   0.0 ( 0 )
 نشر من قبل Monique Arnaud
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M. Arnaud




اسأل ChatGPT حول البحث

I briefly review our current knowledge of the non thermal emission from galaxy clusters and discuss future prospect with Simbol-X. Simbol-X will map the hard X-ray emission in clusters, determine its origin and disentangle the thermal and non-thermal components. Correlated with radio observations, the observation of the non-thermal X-ray emission, when confirmed, will allow to map both the magnetic field and the relativistic electron properties, key information to understand the origin and acceleration of relativistic particles in clusters and its impact on cluster evolution.


قيم البحث

اقرأ أيضاً

110 - C. Ferrari UNS , CNRS , OCA 2010
The relevance of non-thermal cluster studies and the importance of combining observations of future radio surveys with WFXT data are discussed in this paper.
A diffuse non-thermal component has now been observed in massive merging clusters. To better characterise this component, and to extend analyses done for massive clusters down to a lower mass regime, we are conducting a statistical analysis over a la rge number of X-ray clusters (from ROSAT based catalogues). By means of their stacked radio and X-ray emissions, we are investigating correlations between the non-thermal and the thermal baryonic components. We will present preliminary results on radio-X scaling relations with which we aim to probe the mechanisms that power diffuse radio emission ; to better constrain whether the non-thermal cluster properties are compatible with a hierarchical framework of structure formation ; and to quantify the non-thermal pressure.
Deep radio observations of galaxy clusters have revealed the existence of diffuse radio sources (halos and relics) related to the presence of relativistic electrons and weak magnetic fields in the intracluster volume. I will outline our current knowl edge about the presence and properties of this non-thermal cluster component. Despite the recent progress made in observational and theoretical studies of the non-thermal emission in galaxy clusters, a number of open questions about its origin and its effects on the thermo-dynamical evolution of galaxy clusters need to be answered. I will show the importance of combining galaxy cluster observations by new-generation instruments such as LOFAR and Simbol-X. A deeper knowledge of the non-thermal cluster component, together with statistical studies of radio halos and relics, will allow to test the current cluster formation scenario and to better constrain the physics of large scale structure evolution.
98 - Stefan Ohm , Jim Hinton 2012
The recently detected gamma-ray emission from Starburst galaxies is most commonly considered to be diffuse emission arising from strong interactions of accelerated cosmic rays. Mannheim et al. (2012), however, have argued that a population of individ ual pulsar-wind nebulae (PWNe) could be responsible for the detected TeV emission. Here we show that the Starburst environment plays a critical role in the TeV emission from Starburst PWNe, and perform the first detailed calculations for this scenario. Our approach is based on the measured star-formation rates in the Starburst nuclei of NGC 253 and M 82, assumed pulsar birth periods and a simple model for the injection of non-thermal particles. The two-zone model applied here takes into account the high far-infrared radiation field, and different densities and magnetic fields in the PWNe and the Starburst regions, as well as particle escape. We confirm that PWNe can make a significant contribution to the TeV fluxes, provided that the injection spectrum of particles is rather hard and that the average pulsar birth period is rather short (~35 ms). The PWN contribution should lead to a distinct spectral feature which can be probed by future instruments such as CTA.
The search for diffuse non-thermal, inverse Compton (IC) emission from galaxy clusters at hard X-ray energies has been underway for many years, with most detections being either of low significance or controversial. In this work, we investigate 14-19 5 keV spectra from the Swift Burst Alert Telescope (BAT) all-sky survey for evidence of non-thermal excess emission above the exponentially decreasing tail of thermal emission in the flux-limited HIFLUGCS sample. To account for the thermal contribution at BAT energies, XMM-Newton EPIC spectra are extracted from coincident spatial regions so that both thermal and non-thermal spectral components can be determined simultaneously. We find marginally significant IC components in six clusters, though after closer inspection and consideration of systematic errors we are unable to claim a clear detection in any of them. The spectra of all clusters are also summed to enhance a cumulative non-thermal signal not quite detectable in individual clusters. After constructing a model based on single-temperature fits to the XMM-Newton data alone, we see no significant excess emission above that predicted by the thermal model determined at soft energies. This result also holds for the summed spectra of various subgroups, except for the subsample of clusters with diffuse radio emission. For clusters hosting a diffuse radio halo, a relic, or a mini-halo, non-thermal emission is initially detected at the sim5-sigma confidence level - driven by clusters with mini-halos - but modeling and systematic uncertainties ultimately degrade this significance. In individual clusters, the non-thermal pressure of relativistic electrons is limited to sim10% of the thermal electron pressure, with stricter limits for the more massive clusters, indicating that these electrons are likely not dynamically important in the central regions of clusters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا