ﻻ يوجد ملخص باللغة العربية
A diffuse non-thermal component has now been observed in massive merging clusters. To better characterise this component, and to extend analyses done for massive clusters down to a lower mass regime, we are conducting a statistical analysis over a large number of X-ray clusters (from ROSAT based catalogues). By means of their stacked radio and X-ray emissions, we are investigating correlations between the non-thermal and the thermal baryonic components. We will present preliminary results on radio-X scaling relations with which we aim to probe the mechanisms that power diffuse radio emission ; to better constrain whether the non-thermal cluster properties are compatible with a hierarchical framework of structure formation ; and to quantify the non-thermal pressure.
The relevance of non-thermal cluster studies and the importance of combining observations of future radio surveys with WFXT data are discussed in this paper.
Annihilation of Dark Matter (DM) particles has been recognized as one of the possible mechanisms for the production of non-thermal particles and radiation in galaxy clusters. Previous studies have shown that, while DM models can reproduce the spectra
The search for diffuse non-thermal, inverse Compton (IC) emission from galaxy clusters at hard X-ray energies has been underway for many years, with most detections being either of low significance or controversial. In this work, we investigate 14-19
The existence of cosmic rays and weak magnetic fields in the intracluster volume has been well proven by deep radio observations of galaxy clusters. However a detailed physical characterization of the non-thermal component of large scale-structures,
Massive galaxy clusters are the most violent large scale structures undergoing merger events in the Universe. Based upon their morphological properties in X-rays, they are classified as un-relaxed and relaxed clusters and often host (a fraction of th