ﻻ يوجد ملخص باللغة العربية
We apply a novel method (presented in part I) to solve several small-world models for which the method can be applied analytically: the Viana-Bray model (which can be seen as a 0 or infinite dimensional small-world model), the one-dimensional chain small-world model, and the small-world spherical model in generic dimension. In particular, we analyze in detail the one-dimensional chain small-world model with negative short-range coupling showing that in this case, besides a second-order spin glass phase transition, there are two critical temperatures corresponding to first- or second-order phase transitions.
We present, as a very general method, an effective field theory to analyze models defined over small-world networks. Even if the exactness of the method is limited to the paramagnetic regions and to some special limits, it gives the exact critical be
The small-world transition is a first-order transition at zero density $p$ of shortcuts, whereby the normalized shortest-path distance undergoes a discontinuity in the thermodynamic limit. On finite systems the apparent transition is shifted by $Delt
The vertex-cover problem on the Hanoi networks HN3 and HN5 is analyzed with an exact renormalization group and parallel-tempering Monte Carlo simulations. The grand canonical partition function of the equivalent hard-core repulsive lattice-gas proble
We investigate the behavior of the Ising model on two connected Barabasi-Albert scale-free networks. We extend previous analysis and show that a first order temperature-driven phase transition occurs in such system. The transition between antiparalel
We investigate the geometric properties of loops on two-dimensional lattice graphs, where edge weights are drawn from a distribution that allows for positive and negative weights. We are interested in the appearance of spanning loops of total negativ