ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: the role of multipole effects

189   0   0.0 ( 0 )
 نشر من قبل Wei Zhang
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate theoretically the effects of interaction between an optical dipole (semiconductor quantum dot or molecule) and metal nanoparticles. The calculated absorption spectra of hybrid structures demonstrate strong effects of interference coming from the exciton-plasmon coupling. In particular, the absorption spectra acquire characteristic asymmetric lineshapes and strong anti-resonances. We present here an exact solution of the problem beyond the dipole approximation and find that the multipole treatment of the interaction is crucial for the understanding of strongly-interacting exciton-plasmon nano-systems. Interestingly, the visibility of the exciton resonance becomes greatly enhanced for small inter-particle distances due to the interference phenomenon, multipole effects, and electromagnetic enhancement. We find that the destructive interference is particularly strong. Using our exact theory, we show that the interference effects can be observed experimentally even in the exciting systems at room temperature.



قيم البحث

اقرأ أيضاً

The simplicity of single-molecule junctions based on direct bonding of a small molecule between two metallic electrodes make them an ideal system for the study of fundamental questions related to molecular electronics. Here we study the conductance p roperties of six different molecules suspended between Pt electrodes. All the molecular junctions show a typical conductance of about 1G0 which is ascribed to the dominant role of the Pt contacts. However, despite the metallic-like conductivity, the individual molecular signature is well-expressed by the effect of molecular vibrations in the inelastic contribution to the conductance.
56 - W. Zhou , T. Yildirim , E. Durgun 2007
Recently, we have predicted [Phys. Rev. Lett. 97, 226102 (2006)] that a single ethylene molecule can form stable complexes with light transition metals (TM) such as Ti and the resulting TMn-ethylene complex can absorb up to ~12 and 14 wt % hydrogen f or n=1 and 2, respectively. Here we extend this study to include a large number of other metals and different isomeric structures. We obtained interesting results for light metals such as Li. The ethylene molecule is able to complex with two Li atoms with a binding energy of 0.7 eV/Li which then binds up to two H2 molecules per Li with a binding energy of 0.24 eV/H2 and absorption capacity of 16 wt %, a record high value reported so far. The stability of the proposed metal-ethylene complexes was tested by extensive calculations such as normal-mode analysis, finite temperature first-principles molecular dynamics (MD) simulations, and reaction path calculations. The phonon and MD simulations indicate that the proposed structures are stable up to 500 K. The reaction path calculations indicate about 1 eV activation barrier for the TM2-ethylene complex to transform into a possible lower energy configuration where the ethylene molecule is dissociated. Importantly, no matter which isometric configuration the TM2-ethylene complex possesses, the TM atoms are able to bind multiple hydrogen molecules with suitable binding energy for room temperature storage. These results suggest that co-deposition of ethylene with a suitable precursor of TM or Li into nanopores of light-weight host materials may be a very promising route to discovering new materials with high-capacity hydrogen absorption properties.
235 - Dinh Van Tuan , Hanan Dery 2019
Impurities play an important role during recombination processes in semiconductors. Their important role is sharpened in atomically-thin transition-metal dichalcogenides whose two-dimensional character renders electrons and holes highly susceptible t o localization caused by remote charged impurities. We study a multitude of phenomena that arise from the interaction of localized electrons with excitonic complexes. Emphasis is given to the amplification of the phonon-assisted recombination of biexcitons when it is mediated by localized electrons, showing that this mechanism can explain recent photoluminescence experiments in ML-WSe$_2$. In addition, the magnetic-field dependence of this mechanism is analyzed. The results of this work point to (i) an intriguing coupling between the longitudinal-optical and homopolar phonon modes that can further elucidate various experimental results, (ii) the physics behind a series of localization-induced optical transitions in tungsten-based materials, and (iii) the importance of localization centers in facilitating the creation of biexcitons and exciton-exciton annihilation processes.
We introduce a new computational method to study porphyrin-like transition metal complexes, bridging density functional theory and exact many-body techniques, such as the density matrix renormalization group (DMRG). We first derive a multi-orbital An derson impurity Hamiltonian starting from first principles considerations that qualitatively reproduce GGA+U results when ignoring inter-orbital Coulomb repulsion $U$ and Hund exchange $J$. An exact canonical transformation is used to reduce the dimensionality of the problem and make it amenable to DMRG calculations, including all many-body terms (both intra, and inter-orbital), which are treated in a numerically exact way. We apply this technique to FeN$_4$ centers in graphene and show that the inclusion of these terms has dramatic effects: as the iron orbitals become single occupied due to the Coulomb repulsion, the inter-orbital interaction further reduces the occupation yielding a non-monotonic behavior of the magnetic moment as a function of the interactions, with maximum polarization only in a small window at intermediate values of the parameters. Furthermore, $U$ changes the relative position of the peaks in the density of states, particularly on the iron $d_{z^2}$ orbital, which is expected to greatly affect the binding of ligands.
Conductance switching has been reported in many molecular junction devices, but in most cases has not been convincingly explained. We investigate conductance switching in Pt/stearic acid monolayer/Ti devices using pressure-modulated conductance micro scopy. For devices with conductance G>>G_Q or G<<G_Q, where GQ=2e^2/h is the conductance quantum, pressure-induced conductance peaks <30 nm in diameter are observed, indicating the formation of nanoscale conducting pathways between the electrodes. For devices with G~ 1- 2 G_Q, in addition to conductance peaks we also observed conductance dips and oscillations in response to localized pressure. These results can be modeled by considering interfering electron waves along a quantum conductance channel between two partially transmitting electrode surfaces. Our findings underscore the possible use of these devices as atomic-scale switches.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا