ﻻ يوجد ملخص باللغة العربية
Recently, we have predicted [Phys. Rev. Lett. 97, 226102 (2006)] that a single ethylene molecule can form stable complexes with light transition metals (TM) such as Ti and the resulting TMn-ethylene complex can absorb up to ~12 and 14 wt % hydrogen for n=1 and 2, respectively. Here we extend this study to include a large number of other metals and different isomeric structures. We obtained interesting results for light metals such as Li. The ethylene molecule is able to complex with two Li atoms with a binding energy of 0.7 eV/Li which then binds up to two H2 molecules per Li with a binding energy of 0.24 eV/H2 and absorption capacity of 16 wt %, a record high value reported so far. The stability of the proposed metal-ethylene complexes was tested by extensive calculations such as normal-mode analysis, finite temperature first-principles molecular dynamics (MD) simulations, and reaction path calculations. The phonon and MD simulations indicate that the proposed structures are stable up to 500 K. The reaction path calculations indicate about 1 eV activation barrier for the TM2-ethylene complex to transform into a possible lower energy configuration where the ethylene molecule is dissociated. Importantly, no matter which isometric configuration the TM2-ethylene complex possesses, the TM atoms are able to bind multiple hydrogen molecules with suitable binding energy for room temperature storage. These results suggest that co-deposition of ethylene with a suitable precursor of TM or Li into nanopores of light-weight host materials may be a very promising route to discovering new materials with high-capacity hydrogen absorption properties.
From first-principles calculations, we predict that a single ethylene molecule can form a stable complex with two transition metals (TM) such as Ti. The resulting TM-ethylene complex then absorbs up to ten hydrogen molecules, reaching to gravimetric
Mg-Ti alloys have uncommon optical and hydrogen absorbing properties, originating from a spinodal-like microstructure with a small degree of chemical short-range order in the atoms distribution. In the present study we artificially engineer short-ran
The effects of hydrogen (H2) and deuterium (D2) absorption were studied in two Co/Pd multilayers with perpendicular magnetic anisotropy (PMA) using polarized neutron reflectivity (PNR). PNR was measured in an external magnetic field H applied in the
Defects in crystalline silicon consisting of a silicon self-interstitial atom and one, two, three, or four hydrogen atoms are studied within density-functional theory (DFT). We search for low-energy defects by starting from an ensemble of structures
Hydrogen as a fuel can be stored safely with high volumetric density in metals. It can, however, also be detrimental to metals causing embrittlement. Understanding fundamental behavior of hydrogen at atomic scale is key to improve the properties of m