ﻻ يوجد ملخص باللغة العربية
A new procedure to prepare isomerically clean samples of ions with a mass resolving power of more than 100,000 has been developed at the JYFLTRAP tandem Penning trap system. The method utilises a dipolar rf-excitation of the ion motion with separated oscillatory fields in the precision trap. During a subsequent retransfer to the purification trap, the contaminants are rejected and as a consequence, the remaining bunch is isomerically cleaned. This newly-developed method is suitable for very high-resolution cleaning and is at least a factor of five faster than the methods used so far in Penning trap mass spectrometry.
The JYFLTRAP mass spectrometer was used to measure the masses of neutron-rich nuclei in the region between N = 28 to N = 82 with uncertainties better than 10 keV. The impacts on nuclear structure and the r-process paths are reviewed.
The Penning trap mass spectrometer JYFLTRAP was used to measure the atomic masses of radioactive nuclei with an uncertainty better than 10 keV. The atomic masses of the neutron-deficient nuclei around the N = Z line were measured to improve the under
Unstable 10C nuclei are produced as quasi-projectiles in 12C+24Mg collisions at E/A = 53 and 95 MeV. The decay of their short-lived states is studied with the INDRA multidetector array via multi-particle correlation functions. The obtained results sh
A beta-ray detecting nuclear quadrupole resonance system has been developed at NSCL/MSU to measure ground-state electric quadrupole moments of short-lived nuclei produced as fast rare isotope beams. This system enables quick and sequential applicatio
The past few years has seen tremendous progress in our understanding of short-range correlated (SRC) pairing of nucleons within nuclei, much of it coming from electron scattering experiments leading to the break-up of an SRC pair. The interpretation