ﻻ يوجد ملخص باللغة العربية
The past few years has seen tremendous progress in our understanding of short-range correlated (SRC) pairing of nucleons within nuclei, much of it coming from electron scattering experiments leading to the break-up of an SRC pair. The interpretation of these experiments rests on assumptions about the mechanism of the reaction. These assumptions can be directly tested by studying SRC pairs using alternate probes, such as real photons. We propose a 30-day experiment using the Hall D photon beam, nuclear targets, and the GlueX detector in its standard configuration to study short-range correlations with photon-induced reactions. Several different reaction channels are possible, and we project sensitivity in most channels to equal or exceed the 6 GeV-era SRC experiments from Halls A and B. The proposed experiment will therefore decisively test the phenomena of np dominance, the short-distance NN interaction, and reaction theory, while also providing new insight into bound nucleon structure and the onset of color transparency.
The experiment, E08-014, in Hall-A at Jefferson Lab aims to study the short-range correlations (SRC) which are necessary to explain the nuclear strength absent in the mean field theory. The cross sections for $mathrm{^{2}H}$, $mathrm{^{3}He}$, $mathr
A future Electron-Ion Collider (EIC) will deliver luminosities of $10^{33} - 10^{34}$ cm$^{-2}$s$^{-1}$ for collisions of polarized electrons and protons and heavy ions over a wide range of center-of-mass energies (40 $mathrm{GeV}$ to 145 $mathrm{GeV
We present new data probing short-range correlations (SRCs) in nuclei through the measurement of electron scattering off high-momentum nucleons in nuclei. The inclusive 4He/3He cross section ratio is observed to be both x and Q2 independent for 1.5 <
We present an overview of Short-Range Correlations (SRC) studies using the inclusive measurement of the electron scattering off nuclei. A brief introduction of the origin of the SRC is given, followed by the survey of the two-nucleon SRC (2N-SRC) stu
We studied the $^{12}$C(p,2p+n) reaction at beam momenta of 5.9, 8.0 and 9.0 GeV/c. For quasielastic (p,2p) events we reconstructed {bf p_f} the momentum of the knocked-out proton before the reaction; {bf p_f} was then compared (event-by-event) with