ترغب بنشر مسار تعليمي؟ اضغط هنا

High Energy Dispersions in Bi2Sr2CaCu2O8 High Temperature Superconductor from Laser-Based Angle-Resolved Photoemission

125   0   0.0 ( 0 )
 نشر من قبل Wentao Zhang
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Super-high resolution laser-based angle-resolved photoemission (ARPES) measurements have been carried out on the high energy electron dynamics in Bi2Sr2CaCu2O8 (Bi2212) high temperature superconductor. Momentum dependent measurements provide new insights on the nature of high energy kink at 200~400 meV and high energy dispersions. The strong dichotomy between the MDC- and EDC-derived bands is revealed which raises critical issues about its origin and which one represents intrinsic band structure. The MDC-derived high energy features are affected by the high-intensity valence band at higher binding energy and may not be intrinsic.



قيم البحث

اقرأ أيضاً

Laser-based angle-resolved photoemission measurements with super-high resolution have been carried out on an optimally-doped Bi$_2$Sr$_2$CaCu$_2$O$_8$ high temperature superconductor. New high energy features at $sim$115 meV and $sim$150 meV, besides the prominent $sim$70 meV one, are found to develop in the nodal electron self-energy in the superconducting state. These high energy features, which can not be attributed to electron coupling with single phonon or magnetic resonance mode, point to the existence of a new form of electron coupling in high temperature superconductors.
Super-high resolution laser-based angle-resolved photoemission measurements have been carried out on Bi2Sr2CaCu2O8+d (Bi2212) superconductors to investigate momentum dependence of electron coupling with collective excitations (modes). Two coexisting energy scales are clearly revealed over a large momentum space for the first time in the superconducting state of an overdoped Bi2212 superconductor. These two energy scales exhibit distinct momentum dependence: one keeps its energy near 78 meV over a large momentum space while the other changes its energy from $sim$40 meV near the antinodal region to $sim$70 meV near the nodal region. These observations provide a new picture on momentum evolution of electron-boson coupling in Bi2212 that electrons are coupled with two sharp modes simultaneously over a large momentum space in the superconducting states. Their unusual momentum dependence poses a challenge to our current understanding of electron-mode-coupling and its role for high temperature superconductivity in cuprate superconductors.
Super-high resolution laser-based angle-resolved photoemission measurements have been performed on a high temperature superconductor Bi_2Sr_2CaCu_2O_8. The band back-bending characteristic of the Bogoliubov-like quasiparticle dispersion is clearly re vealed at low temperature in the superconducting state. This makes it possible for the first time to experimentally extract the complex electron self-energy and the complex gap function in the superconducting state. The resultant electron self-energy and gap function exhibit features at ~54 meV and ~40 meV, in addition to the superconducting gap-induced structure at lower binding energy and a broad featureless structure at higher binding energy. These information will provide key insight and constraints on the origin of electron pairing in high temperature superconductors.
The design and performance of the first vacuum ultra-violet (VUV) laser-based angle-resolved photoemission (ARPES) system are described. The VUV laser with a photon energy of 6.994 eV and bandwidth of 0.26 meV is achieved from the second harmonic gen eration using a novel non-linear optical crystal KBe2BO3F2 (KBBF). The new VUV laser-based ARPES system exhibits superior performance, including super-high energy resolution better than 1 meV, high momentum resolution, super-high photon flux and much enhanced bulk sensitivity, which are demonstrated from measurements on a typical Bi2Sr2CaCu2O8 high temperature superconductor. Issues and further development related to the VUV laser-based photoemission technique are discussed.
High resolution laser-based angle-resolved photoemission measurements have been carried out on Bi2Sr2CuO6+d superconductor covering a wide doping range from heavily underdoped to heavily overdoped samples. Two obvious energy scales are identified in the nodal dispersions: one is the well-known 50-80 meV high energy kink and the other is <10 meV low energy kink. The high energy kink increases monotonously in its energy scale with increasing doping and shows weak temperature dependence, while the low energy kink exhibits a non-monotonic doping dependence with its coupling strength enhanced sharply below Tc. These systematic investigations on the doping and temperature dependence of these two energy scales favor electron-phonon interactions as their origin. They point to the importance in involving the electron-phonon coupling in understanding the physical properties and the superconductivity mechanism of high temperature cuprate superconductors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا