ترغب بنشر مسار تعليمي؟ اضغط هنا

Development of a Vacuum Ultra-Violet Laser-Based Angle-Resolved Photoemission System with a Super-High Energy Resolution Better Than 1 meV

153   0   0.0 ( 0 )
 نشر من قبل Guodong Liu
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The design and performance of the first vacuum ultra-violet (VUV) laser-based angle-resolved photoemission (ARPES) system are described. The VUV laser with a photon energy of 6.994 eV and bandwidth of 0.26 meV is achieved from the second harmonic generation using a novel non-linear optical crystal KBe2BO3F2 (KBBF). The new VUV laser-based ARPES system exhibits superior performance, including super-high energy resolution better than 1 meV, high momentum resolution, super-high photon flux and much enhanced bulk sensitivity, which are demonstrated from measurements on a typical Bi2Sr2CaCu2O8 high temperature superconductor. Issues and further development related to the VUV laser-based photoemission technique are discussed.



قيم البحث

اقرأ أيضاً

89 - Yu He , Inna Vishik , Ming Yi 2015
We developed a table-top vacuum ultraviolet (VUV) laser with $113.778$nm wavelength (10.897eV) and demonstrated its viability as a photon source for high resolution angle-resolved photoemission spectroscopy (ARPES). This sub-nanosecond pulsed VUV las er operates at a repetition rate of 10MHz, provides a flux of 2$times$10$^{12}$ photons/second, and enables photoemission with energy and momentum resolutions better than 2meV and 0.012AA$^{-1}$, respectively. Space-charge induced energy shifts and spectral broadenings can be reduced below 2meV. The setup reaches electron momenta up to 1.2AA$^{-1}$, granting full access to the first Brillouin zone of most materials. Control over the linear polarization, repetition rate, and photon flux of the VUV source facilitates ARPES investigations of a broad range of quantum materials, bridging the application gap between contemporary low energy laser-based ARPES and synchrotron-based ARPES. We describe the principles and operational characteristics of this source, and showcase its performance for rare earth metal tritellurides, high temperature cuprate superconductors and iron-based superconductors.
Laser-based angle-resolved photoemission measurements with super-high resolution have been carried out on an optimally-doped Bi$_2$Sr$_2$CaCu$_2$O$_8$ high temperature superconductor. New high energy features at $sim$115 meV and $sim$150 meV, besides the prominent $sim$70 meV one, are found to develop in the nodal electron self-energy in the superconducting state. These high energy features, which can not be attributed to electron coupling with single phonon or magnetic resonance mode, point to the existence of a new form of electron coupling in high temperature superconductors.
Super-high resolution laser-based angle-resolved photoemission (ARPES) measurements have been carried out on the high energy electron dynamics in Bi2Sr2CaCu2O8 (Bi2212) high temperature superconductor. Momentum dependent measurements provide new insi ghts on the nature of high energy kink at 200~400 meV and high energy dispersions. The strong dichotomy between the MDC- and EDC-derived bands is revealed which raises critical issues about its origin and which one represents intrinsic band structure. The MDC-derived high energy features are affected by the high-intensity valence band at higher binding energy and may not be intrinsic.
Super-high resolution laser-based angle-resolved photoemission measurements have been performed on a high temperature superconductor Bi_2Sr_2CaCu_2O_8. The band back-bending characteristic of the Bogoliubov-like quasiparticle dispersion is clearly re vealed at low temperature in the superconducting state. This makes it possible for the first time to experimentally extract the complex electron self-energy and the complex gap function in the superconducting state. The resultant electron self-energy and gap function exhibit features at ~54 meV and ~40 meV, in addition to the superconducting gap-induced structure at lower binding energy and a broad featureless structure at higher binding energy. These information will provide key insight and constraints on the origin of electron pairing in high temperature superconductors.
170 - T. Valla 2013
25 years after discovery of high-temperature superconductivity (HTSC) in La$_{2-x}$Ba$_x$CuO$_4$ (LBCO), the HTSC continues to pose some of the biggest challenges in materials science. Cuprates are fundamentally different from conventional supercondu ctors in that the metallic conductivity and superconductivity are induced by doping carriers into an antiferromagnetically ordered correlated insulator. In such systems, the normal state is expected to be quite different from a Landau-Fermi liquid - the basis for the conventional BCS theory of superconductivity. The situation is additionally complicated by the fact that cuprates are susceptible to charge/spin ordering tendencies, especially in the low-doping regime. The role of such tendencies on the phenomenon of superconductivity is still not completely clear. Here, we present studies of the electronic structure in cuprates where the superconductivity is strongly suppressed as static spin and charge orders or stripes develop near the doping level of $x =1/8$ and outside of the superconducting dome, for $x<0.055$. We discuss the relationship between the stripes, superconductivity, pseudogap and the observed electronic excitations in these materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا