ﻻ يوجد ملخص باللغة العربية
All the Trojan asteroids orbit about the Sun at roughly the same heliocentric distance as Jupiter. Differences in the observed visible reflection spectra range from neutral to red, with no ultra-red objects found so far. Given that the Trojan asteroids are collisionally evolved, a certain degree of variability is expected. Additionally, cosmic radiation and sublimation are important factors in modifying icy surfaces even at those large heliocentric distances. We search for correlations between physical and dynamical properties, we explore relationships between the following four quantities; the normalised visible reflectivity indexes ($S$), the absolute magnitudes, the observed albedos and the orbital stability of the Trojans. We present here visible spectroscopic spectra of 25 Trojans. This new data increase by a factor of about 5 the size of the sample of visible spectra of Jupiter Trojans on unstable orbits. The observations were carried out at the ESO-NTT telescope (3.5m) at La Silla, Chile, the ING-WHT (4.2m) and NOT (2.5m) at Roque de los Muchachos observatory, La Palma, Spain. We have found a correlation between the size distribution and the orbital stability. The absolute-magnitude distribution of the Trojans in stable orbits is found to be bimodal, while the one of the unstable orbits is unimodal, with a slope similar to that of the small stable Trojans. This supports the hypothesis that the unstable objects are mainly byproducts of physical collisions. The values of $S$ of both the stable and the unstable Trojans are uniformly distributed over a wide range, from $0 %/1000AA $ to about $15 %/1000AA$. The values for the stable Trojans tend to be slightly redder than the unstable ones, but no significant statistical difference is found.
Jupiter has nearly 8000~known co-orbital asteroids orbiting in the L4 and L5 Lagrange points called Jupiter Trojan asteroids. Aside from the greater number density of the L4 cloud the two clouds are in many ways considered to be identical. Using spar
The Trojan asteroids provide a unique perspective on the history of Solar System. As a large population of small bodies, they record important gravitational interactions and dynamical evolution of the Solar System. In the past decade, significant adv
We present the results of an optical lightcurve survey of 114 Jovian Trojan asteroids conducted to determine the fraction of contact binaries. Sparse-sampling was used to assess the photometric range of the asteroids and those showing the largest ran
We observed the Mars Trojan asteroids (5261) Eureka and (101429) 1998 VF31 and the candidate Mars Trojan 2001 FR127 at 11.2 and 18.1 microns using Michelle on the Gemini North telescope. We derive diameters of 1.28, 0.78, and <0.52 km, respectively,
We analyze 1187 observations of about 860 unique candidate Jovian Trojan asteroids listed in the 3rd release of Sloan Digital Sky Survey (SDSS) Moving Object Catalog. The sample is complete at the faint end to r=21.2 mag (apparent brightness) and H=1