ترغب بنشر مسار تعليمي؟ اضغط هنا

Fraction of Contact Binary Trojan Asteroids

119   0   0.0 ( 0 )
 نشر من قبل Pedro Lacerda
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the results of an optical lightcurve survey of 114 Jovian Trojan asteroids conducted to determine the fraction of contact binaries. Sparse-sampling was used to assess the photometric range of the asteroids and those showing the largest ranges were targeted for detailed follow-up observations. This survey led to the discovery of two Trojan asteroids, (17365) and (29314) displaying large lightcurve ranges (~1 magnitude) and long rotation periods (< 2 rotations per day consistent with a contact binary nature. The optical lightcurves of both asteroids are well matched by Roche binary equilibrium models. Using these binary models, we find low densities of ~600 kg/m^3 and 800 kg/m^3, suggestive of porous interiors. The fraction of contact binaries is estimated to be between 6% and 10%, comparable to the fraction in the Kuiper Belt. The total binary fraction in the Trojan clouds (including both wide and close pairs) must be higher.



قيم البحث

اقرأ أيضاً

The Trojan asteroids provide a unique perspective on the history of Solar System. As a large population of small bodies, they record important gravitational interactions and dynamical evolution of the Solar System. In the past decade, significant adv ances have been made in understanding physical properties, and there has been a revolution in thinking about the origin of Trojans. The ice and organics generally presumed to be a significant part of Trojan compositions have yet to be detected directly, though low density of the binary system Patroclus (and possibly low density of the binary/moonlet system Hektor) is consistent with an interior ice component. By contrast, fine-grained silicates that appear to be similar to cometary silicates in composition have been detected, and a color bimodality may indicate distinct compositional groups among the Trojans. Whereas Trojans had traditionally been thought to have formed near 5 AU, a new paradigm has developed in which the Trojans formed in the proto-Kuiper Belt, and they were scattered inward and captured in the Trojan swarms as a result of resonant interactions of the giant planets. Whereas the orbital and population distributions of current Trojans are consistent with this origin scenario, there are significant differences between current physical properties of Trojans and those of Kuiper Belt objects. These differences may be indicative of surface modification due to the inward migration of objects that became the Trojans, but understanding of appropriate modification mechanisms is poor and would benefit from additional laboratory studies. Many open questions remain, and the future promises significant strides in our understanding of Trojans. The time is ripe for a spacecraft mission to the Trojans, to turn these objects into geologic worlds that can be studied in detail to unravel their complex history.
138 - M. D. Melita 2008
All the Trojan asteroids orbit about the Sun at roughly the same heliocentric distance as Jupiter. Differences in the observed visible reflection spectra range from neutral to red, with no ultra-red objects found so far. Given that the Trojan asteroi ds are collisionally evolved, a certain degree of variability is expected. Additionally, cosmic radiation and sublimation are important factors in modifying icy surfaces even at those large heliocentric distances. We search for correlations between physical and dynamical properties, we explore relationships between the following four quantities; the normalised visible reflectivity indexes ($S$), the absolute magnitudes, the observed albedos and the orbital stability of the Trojans. We present here visible spectroscopic spectra of 25 Trojans. This new data increase by a factor of about 5 the size of the sample of visible spectra of Jupiter Trojans on unstable orbits. The observations were carried out at the ESO-NTT telescope (3.5m) at La Silla, Chile, the ING-WHT (4.2m) and NOT (2.5m) at Roque de los Muchachos observatory, La Palma, Spain. We have found a correlation between the size distribution and the orbital stability. The absolute-magnitude distribution of the Trojans in stable orbits is found to be bimodal, while the one of the unstable orbits is unimodal, with a slope similar to that of the small stable Trojans. This supports the hypothesis that the unstable objects are mainly byproducts of physical collisions. The values of $S$ of both the stable and the unstable Trojans are uniformly distributed over a wide range, from $0 %/1000AA $ to about $15 %/1000AA$. The values for the stable Trojans tend to be slightly redder than the unstable ones, but no significant statistical difference is found.
319 - D. E. Trilling 2007
We observed the Mars Trojan asteroids (5261) Eureka and (101429) 1998 VF31 and the candidate Mars Trojan 2001 FR127 at 11.2 and 18.1 microns using Michelle on the Gemini North telescope. We derive diameters of 1.28, 0.78, and <0.52 km, respectively, with corresponding geometric visible albedos of 0.39, 0.32, and >0.14. The albedos for Eureka and 1998 VF31 are consistent with the taxonomic classes and compositions (S(I)/angritic and S(VII)/achrondritic, respectively) and implied histories presented in a companion paper by Rivkin et al. Eurekas surface likely has a relatively high thermal inertia, implying a thin regolith that is consistent with predictions and the small size that we derive.
Aims. We investigate the influence of the Yarkovsky force on the long-term orbital evolution of Jupiter Trojan asteroids. Methods. Clones of the observed population with different sizes and different thermal properties were numerically integrated for 1 Gyr with and without the Yarkovsky effect. The escape rate of these objects from the Trojan region as well as changes in the libration amplitude, eccentricity, and inclination were used as a metric of the strength of the Yarkovsky effect on the Trojan orbits. Results. Objects with radii $Rleq$1 km are significantly influenced by the Yarkovsky force. The effect causes a depletion of these objects over timescales of a few hundred million years. As a consequence, we expect the size-frequency distribution of small Trojans to show a shallower slope than that of the currently observable population ($R$ $gtrsim$ 1 km), with a turning point between $R$ = 100 m and $R$ = 1 km. The effect of the Yarkovsky acceleration on the orbits of Trojans depends on the sense of rotation in a complex way. The libration amplitude of prograde rotators decreases with time while the eccentricity increases. Retrograde rotators experience the opposite effect, which results in retrograde rotators being ejected faster from the 1:1 resonance region. Furthermore, for objects affected by the Yarkovsky force, we find indications that the effect tends to smooth out the differences in the orbital distribution between the two clouds.
We have used the XSHOOTER echelle spectrograph on the European Southern Obseratory (ESO) Very Large Telescope (VLT) to obtain UVB-VIS-NIR (ultraviolet-blue (UVB), visible (VIS) and near-infrared (NIR)) reflectance spectra of two members of the Eureka family of L5 Mars Trojans, in order to test a genetic relationship to Eureka. In addition to obtaining spectra, we also carried out VRI photometry of one of the VLT targets using the 2-m telescope at the Bulgarian National Astronomical Observatory - Rozhen and the two-channel focal reducer. We found that these asteroids belong to the olivine-dominated A, or Sa, taxonomic class. As Eureka itself is also an olivine-dominated asteroid, it is likely that all family asteroids share a common origin and composition. We discuss the significance of these results in terms of the origin of the martian Trojan population.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا