ترغب بنشر مسار تعليمي؟ اضغط هنا

Direct Nuclear Reactions in Lithium-Lithium Systems: 7Li+7Li at Elab = 2 - 16 MeV

34   0   0.0 ( 0 )
 نشر من قبل Bogus{\\l}aw Kamys
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English
 تأليف P. Rosenthal




اسأل ChatGPT حول البحث

Angular distributions of 7Li(7Li,t), (7Li,alpha) and (7Li,6He) reactions were measured for laboratory energies from 2 - 16 MeV. Exact finite range DWBA analyses were performed with the aim to identify contributions of direct processes and to investigate the applicability of DWBA to such few nucleon systems. It turned out that DWBA can be successfully applied to estimate differential and total cross sections of direct transfer processes in 7Li+7Li interaction. The direct mechanism was found to play a dominant role in most of these reactions but significant contributions of other, strongly energy dependent processes were also established. It is suggested that these processes might be due to isolated resonances superimposed on the backround of statistical fluctuations arising from interference of compound nucleus and direct transfer contributions.



قيم البحث

اقرأ أيضاً

Accurate 7Li(d,n)24He thermonuclear reaction rates are crucial for precise prediction of the primordial abundances of Lithium and Beryllium and to probe the mysteries beyond fundamental physics and the standard cosmological model. However, uncertaint ies still exist in current reaction rates of 7Li(d,n)24He widely used in Big Bang Nucleosynthesis (BBN) simulations. In this work, we reevaluate the 7Li(d,n)24He reaction rate using the latest data on the three near-threshold 9Be excited states from experimental measurements. We present for the first time uncertainties that are directly constrained by experiments. Additionally, we take into account for the first time the contribution from the subthreshold resonance at 16.671 MeV of 9Be. We obtain a 7Li(d,n)24He rate that is overall smaller than the previous estimation by about a factor of 60 at the typical temperature of the onset of primordial nucleosynthesis. We implemented our new rate in BBN nucleosynthesis calculations, and we show that the new rates have a very limited impact on the final light element abundances in uniform density models. Typical abundance variations are in the order of 0.002%. For nonuniform density BBN models, the predicted 7Li production can be increased by 10% and the primordial production of light nuclides with mass number A>7 can be increased by about 40%. Our results confirm that the cosmological lithium problem remains a long-standing unresolved puzzle from the standpoint of nuclear physics.
57 - N. Soic 1998
Spectra of coincident charged particles from the reactions induced by a 52 MeV 7Li beam incident on a beryllium target were measured. Strong contributions of the 7Li quasi-free scattering off the alpha-cluster in 9Be nucleus were observed. This obser vation supports the conclusions from the study of complete fusion of weakly bound light nuclei at low energies that the fragility of the nuclei makes their fusion less probable.
Coherent photoproduction of $pi^0$-mesons from threshold ($E_{th} approx$ 136 MeV) throughout the $Delta$-resonance region and of $eta$-mesons close to the production threshold ($E_{th} approx$ 570 MeV for $eta$) has been measured for $^7$Li nuclei. The experiment was performed using the tagged-photon beam of the Mainz MAMI accelerator with the Crystal Ball and TAPS detectors combined to give an almost 4$pi$ solid-angle electromagnetic calorimeter. The reactions were identified by a combined invariant-mass and missing-energy analysis. A comparison of the pion data to plane-wave impulse modelling tests the nuclear mass form factor. So far coherent $eta$-production had been only identified for the lightest nuclear systems ($^2$H and $^3$He). For $^3$He a large enhancement of the cross section above plane-wave approximations had been reported, indicating the formation of a quasi-bound state. The present Li-data for $eta$-production agree with a plane-wave approximation. Contrary to $^3$He, neither a threshold enhancement of the total cross section nor a deviation of the angular distributions from the expected form-factor dependence were observed.
131 - Moshe Gai 2018
The destruction of 7Be with neutrons represents the last possible standard avenue to reduce the predicted abundance of the primordial 7Li and in this way to attempt to solve the Cosmological 7Li problem. We discuss the results of an experiment perfor med at the Soreq Applied Research Accelerator Facility (SARAF) in Israel where we measured the Maxwellian Averaged Cross Sections (MACS) of the 7Be(n,p), 7Be(n,a), and 7Be(n,ga) reactions. Our MACS measured at 49.5 keV in the window of the Big Bang Nucleosynthesis (BBN), indicate the lack of standard nuclear physics solution to the Primordial 7Li Problem.
The reaction 7Li(pi+,pi-)7B has been measured at incident pion energies of 30-90 MeV. 7Li constitutes the lightest target nucleus, where the pionic charge exchange may proceed as a binary reaction to a discrete final state. Like in the Delta-resonanc e region the observed cross sections are much smaller than expected from the systematics found for heavier nuclei. In analogy to the neutron halo case of 11Li this cross section suppression is interpreted as evidence for a proton halo in the particle-unstable nucleus 7B.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا