ترغب بنشر مسار تعليمي؟ اضغط هنا

The nature of star formation in distant ultraluminous infrared galaxies selected in a remarkably narrow redshift range

165   0   0.0 ( 0 )
 نشر من قبل Duncan Farrah
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف D. Farrah




اسأل ChatGPT حول البحث

We present mid-infrared spectra of thirty two high redshift ultraluminous infrared galaxies, selected via the stellar photospheric feature at rest-frame 1.6um, and an observed-frame 24um flux of >500muJy. Nearly all the sample reside in a redshift range of <z>=1.71+/-0.15, and have rest-frame 1-1000um luminosities of 10^12.9 - 10^13.8 Lsun. Most of the spectra exhibit prominent polycyclic aromatic hydrocarbon emission features, and weak silicate absorption, consistent with a starburst origin for the IR emission. Our selection method appears to be a straightforward and efficient way of finding distant, IR-luminous, star-forming galaxies in narrow redshift ranges. There is however evidence that the mid-IR spectra of our sample differ systematically from those of local ULIRGs; our sample have comparable PAH equivalent widths but weaker apparent silicate absorption, and (possibly) enhanced PAH 6.2um/7.7um and 6.2um/11.2um flux ratios. Furthermore, the composite mid-IR spectrum of our sample is almost identical to that of local starbursts with IR luminosities of 10^10-10^11 Lsun rather than that of local ULIRGs. These differences are consistent with a reduced dust column, which can plausibly be obtained via some combination of (1) star formation that is extended over spatial scales of 1-4Kpc, and (2) star formation in unusually gas-rich regions.

قيم البحث

اقرأ أيضاً

We conducted systematic observations of the HI Br-alpha line (4.05 micron) and the polycyclic aromatic hydrocarbon (PAH) feature (3.3 micron) in 50 nearby (z<0.3) ultraluminous infrared galaxies (ULIRGs) with AKARI. The Br-alpha line is predicted to be the brightest among the HI lines under high dust-extinction conditions (A_V>15 mag). The Br-alpha line traces ionizing photons from OB stars and so is used as an indicator of star formation on the assumption of the initial mass function. We detected the Br-alpha line in 33 ULIRGs. The luminosity of the line (L_BrA) correlates well with that of the 3.3 micron PAH emission (L_3.3). Thus we utilize L_3.3 as an indicator of star formation in fainter objects where the Br-alpha line is undetected. The mean L_BrA/L_IR ratio in LINERs/Seyferts is significantly lower than that in HII galaxies. This difference is reconfirmed with the L_3.3/L_IR ratio in the larger sample (46 galaxies). Using the ratios, we estimate that the contribution of starburst in LINERs/Seyferts is ~67%, and active galactic nuclei contribute to the remaining ~33%. However, comparing the number of ionizing photons, Q_BrA, derived from L_BrA with that, Q_IR, expected from star formation rate required to explain L_IR, we find that the mean Q_BrA/Q_IR ratio is only 55.5+/-7.5% even in HII galaxies which are thought to be energized by pure starburst. This deficit of ionizing photons traced by the Br-alpha line is significant even taking heavy dust extinction into consideration. We propose that dust within HII regions absorbs a significant fraction of ionizing photons.
We present new observations made with the IRAM 30m telescope of the J=1-0 and 3-2 lines of HCN and HCO^+ used to probe the dense molecular gas content in a sample of 17 local luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs). These obse rvations have allowed us to derive an updated version of the power law describing the correlation between the FIR luminosity (L_FIR) and the HCN(1-0) luminosity (L_HCN(1-0)) of local and high-redshift galaxies. We present the first clear observational evidence that the star formation efficiency of the dense gas (SFE_dense), measured as the L_FIR/L_HCN(1-0) ratio, is significantly higher in LIRGs and ULIRGs than in normal galaxies, a result that has also been found recently in high-redshift galaxies. This may imply a statistically significant turn upward in the Kennicutt-Schmidt law derived for the dense gas at L_FIR >= 10^11 L_sun. We have used a one-phase Large Velocity Gradient (LVG) radiative transfer code to fit the three independent line ratios derived from our observations. The results of this analysis indicate that the [HCN]/[HCO^+] abundance ratios could be up to one order of magnitude higher than normal in a significant number of LIRGs and ULIRGs of our sample. An overabundance of HCN at high L_FIR implies that the reported trend in the L_FIR/L_HCN ratio as a function of L_FIR would be underestimating a potentially more dramatic change of the SFE_dense. Results obtained with two-phase LVG models corroborate that the L_HCN(1-0)-to-M_dense conversion factor must be lowered at high L_FIR. We discuss the implications of these findings for the use of HCN as a tracer of the dense molecular gas in local and high-redshift luminous infrared galaxies.
The enormous amounts of infrared (IR) radiation emitted by luminous infrared galaxies (LIRGs, L_IR=10^11-10^12Lsun) and ultraluminous infrared galaxies (ULIRGs, L_IR>10^12Lsun) are produced by dust heated by intense star formation (SF) activity and/o r an active galactic nucleus (AGN). The elevated star formation rates and high AGN incidence in (U)LIRGs make them ideal candidates to study the interplay between SF and AGN activity in the local universe. In this paper I review recent results on the physical extent of the SF activity, the AGN detection rate (including buried AGN), the AGN bolometric contribution to the luminosity of the systems, as well as the evolution of local LIRGs and ULIRGs. The main emphasis of this review is on recent results from IR observations.
153 - Philip R. Maloney 1999
The energy input into the interstellar medium in Ultraluminous Infrared Galaxies (ULIRGs) is enormous, regardless of the nature of the power source. I discuss some of the major consequences for the structure and energetics of the ISM in these galaxie s. Observationally, the column densities in the nuclear regions of ULIRGs are known to be very high, which makes distinguishing starbursts from AGN quite difficult. The level of energy and momentum injection means that the pressure in the ISM must be extremely high, at least 3-4 orders of magnitude larger than in the local ISM or typical giant molecular clouds. It also means that the luminosity of GMCs in ULIRGs must be very high, as they must radiate many times their binding energy over their lifetimes. I briefly review the influence which X-ray irradiation can have on the ISM in AGN-powered ULIRGs. Finally, I show that the presence of PAH features in ULIRGs does not imply that they must be starburst-dominated, since at the column densities and pressures typical of the ISM in ULIRGs PAHs can survive even at tens of parsec distances from the AGN.
We present mid-infrared spectroscopy obtained with the Spitzer Space Telescope of a sample of 11 optically faint, infrared luminous galaxies selected from a Spitzer MIPS 70um imaging survey of the NDWFS Bootes field. These are the first Spitzer IRS s pectra presented of distant 70um-selected sources. All the galaxies lie at redshifts 0.3<z<1.3 and have very large infrared luminosities of L_IR~ 0.1-17 x 10^12 solar luminosities. Seven of the galaxies exhibit strong emission features attributed to polycyclic aromatic hydrocarbons (PAHs). The average IRS spectrum of these sources is characteristic of classical starburst galaxies, but with much larger infrared luminosities. The PAH luminosities of L(7.7) ~ 0.4 - 7 x 10^11 solar luminosities imply star formation rates of ~ 40 - 720 solar masses per year. Four of the galaxies show deep 9.7um silicate absorption features and no significant PAH emission features (6.2um equivalent widths < 0.03um). The large infrared luminosities and low f70/f24 flux density ratios suggests that these sources have AGN as the dominant origin of their large mid-infrared luminosities, although deeply embedded but luminous starbursts cannot be ruled out. If the absorbed sources are AGN-dominated, a significant fraction of all far-infrared bright, optically faint sources may be dominated by AGN.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا