ترغب بنشر مسار تعليمي؟ اضغط هنا

Next-to-leading order multi-leg processes for the Large Hadron Collider

169   0   0.0 ( 0 )
 نشر من قبل Thomas Binoth Dr.
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this talk we discuss recent progress concerning precise predictions for the LHC. We give a status report of three applications of our method to deal with multi-leg one-loop amplitudes: The interference term of Higgs production by gluon- and weak boson fusion to order O(alpha^2 alpha_s^3) and the next-to-leading order corrections to the two processes pp -> ZZ jet and u ubar -> d dbar s sbar. The latter is a subprocess of the four jet cross section at the LHC.

قيم البحث

اقرأ أيضاً

62 - William B. Kilgore 2004
I describe a subtraction scheme for the next-to-next-to-leading order calculation of single inclusive production at hadron colliders. Such processes include Drell-Yan, W^{+/-}, Z and Higgs Boson production. The key to such a calculation is a treatmen t of initial state radiation which preserves the production characteristics, such as the rapidity distribution, of the process involved. The method builds upon the Dipole Formalism and, with proper modifications, could be applied to deep inelastic scattering and e^+ e^- annihilation to hadrons.
We report the results of a next-to-leading order event generator of purely gluonic jet production. This calculation is the first step in the construction of a full next-to-leading order calculation of three jet production at hadron colliders. Several jet-algorithms commonly used in experiments are implemented and their numerical stability is investigated.
We determine an approximate expression for the O(alpha_s^3) contribution chi_2 to the kernel of the BFKL equation, which includes all collinear and anticollinear singular contributions. This is derived using recent results on the relation between the GLAP and BFKL kernels (including running-coupling effects to all orders) and on small-x factorization schemes. We present the result in various schemes, relevant both for applications to the BFKL equation and to small-x evolution of parton distributions.
In the framework of the QCD shock-wave approach, we review our results on the description of diffractive production of various final states (jets, meson) at next-to-leading order. This is applied to exclusive diffractive dijet electroproduction at HERA.
366 - D. de Florian , L. Vanni 2003
We discuss the production of two hadrons in e+e- annihilation within the framework of perturbative QCD. The cross section for this process is calculated to next-to-leading order accuracy with a selection of variables that allows the consideration of events where the two hadrons are detected in the same jet. In this configuration we contemplate the possibility that the hadrons come from a double fragmentation of a single parton. The double-fragmentation functions required to describe the transition of a parton to two hadrons are also necessary to completely factorize all collinear singularities. We explicitly show that factorization applies to next-to-leading order in the case of two-hadron production.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا