ترغب بنشر مسار تعليمي؟ اضغط هنا

Exclusive diffractive processes including saturation effects at next-to-leading order

131   0   0.0 ( 0 )
 نشر من قبل Samuel Wallon
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In the framework of the QCD shock-wave approach, we review our results on the description of diffractive production of various final states (jets, meson) at next-to-leading order. This is applied to exclusive diffractive dijet electroproduction at HERA.

قيم البحث

اقرأ أيضاً

62 - William B. Kilgore 2004
I describe a subtraction scheme for the next-to-next-to-leading order calculation of single inclusive production at hadron colliders. Such processes include Drell-Yan, W^{+/-}, Z and Higgs Boson production. The key to such a calculation is a treatmen t of initial state radiation which preserves the production characteristics, such as the rapidity distribution, of the process involved. The method builds upon the Dipole Formalism and, with proper modifications, could be applied to deep inelastic scattering and e^+ e^- annihilation to hadrons.
We determine an approximate expression for the O(alpha_s^3) contribution chi_2 to the kernel of the BFKL equation, which includes all collinear and anticollinear singular contributions. This is derived using recent results on the relation between the GLAP and BFKL kernels (including running-coupling effects to all orders) and on small-x factorization schemes. We present the result in various schemes, relevant both for applications to the BFKL equation and to small-x evolution of parton distributions.
We present a first analysis of parton-to-pion fragmentation functions at next-to-next-to-leading order accuracy in QCD based on single-inclusive pion production in electron-positron annihilation. Special emphasis is put on the technical details neces sary to perform the QCD scale evolution and cross section calculation in Mellin moment space. We demonstrate how the description of the data and the theoretical uncertainties are improved when next-to-next-to-leading order QCD corrections are included.
99 - V. Guzey 2016
We make predictions for the cross sections of diffractive dijet photoproduction in $pp$, $pA$ and $AA$ ultraperipheral collisions (UPCs) at the LHC during Runs 1 and 2 using next-to-leading perturbative QCD. We find that the resulting cross sections are sufficiently large and, compared to lepton-proton scattering at HERA, have an enhanced sensitivity to small observed momentum fractions in the diffractive exchange, commonly denoted $z_{P}^{rm jets}$, and an unprecedented reach in the invariant mass of the photon-nucleon system $W$. We examine two competing schemes of diffractive QCD factorization breaking, which assume either a global suppression factor or a suppression for resolved photons only and demonstrate that the two scenarios can be distinguished by the nuclear dependence of the distributions in the observed parton momentum fraction in the photon $x_{gamma}^{rm jets}$.
Jets constructed via clustering algorithms (e.g., anti-$k_T$, soft-drop) have been proposed for many precision measurements, such as the strong coupling $alpha_s$ and the nucleon intrinsic dynamics. However, the theoretical accuracy is affected by mi ssing QCD corrections at higher orders for the jet functions in the associated factorization theorems. Their calculation is complicated by the jet clustering procedure. In this work, we propose a method to evaluate jet functions at higher orders in QCD. The calculation involves the phase space sector decomposition with suitable soft subtractions. As a concrete example, we present the quark-jet function using the anti-$k_T$ algorithm with E-scheme recombination at next-to-next-to-leading order.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا