ترغب بنشر مسار تعليمي؟ اضغط هنا

Slip flow over structured surfaces with entrapped microbubbles

60   0   0.0 ( 0 )
 نشر من قبل Jari Hyv\\\"aluoma
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

On hydrophobic surfaces, roughness may lead to a transition to a superhydrophobic state, where gas bubbles at the surface can have a strong impact on a detected slip. We present two-phase lattice Boltzmann simulations of a Couette flow over structured surfaces with attached gas bubbles. Even though the bubbles add slippery surfaces to the channel, they can cause negative slip to appear due to the increased roughness. The simulation method used allows the bubbles to deform due to viscous stresses. We find a decrease of the detected slip with increasing shear rate which is in contrast to some recent experimental results implicating that bubble deformation cannot account for these experiments. Possible applications of bubble surfaces in microfluidic devices are discussed.

قيم البحث

اقرأ أيضاً

Superhydrophobic surfaces reduce drag by combining hydrophobicity and roughness to trap gas bubbles in a micro- and nanoscopic texture. Recent work has focused on specific cases, such as striped grooves or arrays of pillars, with limited theoretical guidance. Here, we consider the experimentally relevant limit of thin channels and obtain rigorous bounds on the effective slip length for any two-component (e.g. low-slip and high-slip) texture with given area fractions. Among all anisotropic textures, parallel stripes attain the largest (or smallest) possible slip in a straight, thin channel for parallel (or perpendicular) orientation with respect to the mean flow. For isotropic (e.g. chessboard or random) textures, the Hashin-Strikman conditions further constrain the effective slip. These results provide a framework for the rational design of superhydrophobic surfaces.
We study the flow of concentrated hard-sphere colloidal suspensions along smooth, non-stick walls using cone-plate rheometry and simultaneous confocal microscopy. In the glass regime, the global flow shows a transition from Herschel-Bulkley behavior at large shear rate to a characteristic Bingham slip response at small rates, absent for ergodic colloidal fluids. Imaging reveals both the `solid microstructure during full slip and the local nature of the `slip to shear transition. Both the local and global flow are described by a phenomenological model, and the associated Bingham slip parameters exhibit characteristic scaling with size and concentration of the hard spheres.
We present a comprehensive study of the slip and flow of concentrated colloidal suspensions using cone-plate rheometry and simultaneous confocal imaging. In the colloidal glass regime, for smooth, non-stick walls, the solid nature of the suspension c auses a transition in the rheology from Herschel-Bulkley (HB) bulk flow behavior at large stress to a Bingham-like slip behavior at low stress, which is suppressed for sufficient colloid-wall attraction or colloid-scale wall roughness. Visualization shows how the slip-shear transition depends on gap size and the boundary conditions at both walls and that partial slip persist well above the yield stress. A phenomenological model, incorporating the Bingham slip law and HB bulk flow, fully accounts for the behavior. Microscopically, the Bingham law is related to a thin (sub-colloidal) lubrication layer at the wall, giving rise to a characteristic dependence of slip parameters on particle size and concentration. We relate this to the suspensions osmotic pressure and yield stress and also analyze the influence of van der Waals interaction. For the largest concentrations, we observe non-uniform flow around the yield stress, in line with recent work on bulk shear-banding of concentrated pastes. We also describe residual slip in concentrated liquid suspensions, where the vanishing yield stress causes coexistence of (weak) slip and bulk shear flow for all measured rates.
We image the flow of a nearly random close packed, hard-sphere colloidal suspension (a `paste) in a square capillary using confocal microscopy. The flow consists of a `plug in the center while shear occurs localized adjacent to the channel walls, rem iniscent of yield-stress fluid behavior. However, the observed scaling of the velocity profiles with the flow rate strongly contrasts yield-stress fluid predictions. Instead, the velocity profiles can be captured by a theory of stress fluctuations originally developed for chute flow of dry granular media. We verified this behavior both for smooth and rough boundary conditions.
As a typical multiphase fluid flow process, drainage in porous media is of fundamental interest in nature and industrial applications. During drainage processes in unsaturated soils and porous media in general, saturated clusters, in which a liquid p hase fully occupies the pore space between solid grains, affect the relative permeability and effective stress of the system. In this study, we experimentally studied drainage processes in unsaturated granular media as a model porous system. The distribution of saturated clusters is analysed by an optical imaging method under different drainage conditions, in which pore-scale information from Voronoi and Delaunay tessellation was used to characterise the topology of saturated cluster distributions. By employing statistical analyses, the observed spatial and temporal information of multiphase flow and fluid entrapment in porous media are described. The results indicate that the distributions of both the crystallised cell size and pore size are positively correlated to the spatial and temporal distribution of saturated cluster sizes. The saturated cluster size is found to follow a lognormal distribution, in which the generalised Bond number correlates negatively to the scale parameter and positively to the shape parameter. These findings can be used to connect pore-scale behaviour with overall hydro-mechanical characteristics in partially saturated porous media, using both the degree of saturation and generalised Bond number.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا