ﻻ يوجد ملخص باللغة العربية
As a typical multiphase fluid flow process, drainage in porous media is of fundamental interest in nature and industrial applications. During drainage processes in unsaturated soils and porous media in general, saturated clusters, in which a liquid phase fully occupies the pore space between solid grains, affect the relative permeability and effective stress of the system. In this study, we experimentally studied drainage processes in unsaturated granular media as a model porous system. The distribution of saturated clusters is analysed by an optical imaging method under different drainage conditions, in which pore-scale information from Voronoi and Delaunay tessellation was used to characterise the topology of saturated cluster distributions. By employing statistical analyses, the observed spatial and temporal information of multiphase flow and fluid entrapment in porous media are described. The results indicate that the distributions of both the crystallised cell size and pore size are positively correlated to the spatial and temporal distribution of saturated cluster sizes. The saturated cluster size is found to follow a lognormal distribution, in which the generalised Bond number correlates negatively to the scale parameter and positively to the shape parameter. These findings can be used to connect pore-scale behaviour with overall hydro-mechanical characteristics in partially saturated porous media, using both the degree of saturation and generalised Bond number.
The motion of active polymers in a porous medium is shown to depend critically on flexibilty, activity and degree of polymerization. For given Peclet number, we observe a transition from localisation to diffusion as the stiffness of the chains is inc
Analytical solutions and a vast majority of numerical ones for fracture propagation in saturated porous media yield smooth behavior while experiments, field observations and a few numerical solutions reveal stepwise crack advancement and pressure osc
Transport of viscous fluid through porous media is a direct consequence of the pore structure. Here we investigate transport through a specific class of two-dimensional porous geometries, namely those formed by fluid-mechanical erosion. We investigat
Porous media with hierarchical structures are commonly encountered in both natural and synthetic materials, e.g., fractured rock formations, porous electrodes and fibrous materials, which generally consist of two or more distinguishable levels of por
The enhanced oil recovery technique of low-salinity (LS) water flooding is a topic of substantial interest in the petroleum industry. Studies have shown that LS brine injection can increase oil production relative to conventional high-salinity (HS) b