ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermal radiation processes

33   0   0.0 ( 0 )
 نشر من قبل J. S. Kaastra
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss the different physical processes that are important to understand the thermal X-ray emission and absorption spectra of the diffuse gas in clusters of galaxies and the warm-hot intergalactic medium. The ionisation balance, line and continuum emission and absorption properties are reviewed and several practical examples are given that illustrate the most important diagnostic features in the X-ray spectra.

قيم البحث

اقرأ أيضاً

104 - Lars M. Johansen 2004
It is demonstrated that thermal radiation of small occupation number is strongly nonclassical. This includes most forms of naturally occurring radiation. Nonclassicality can be observed as a negative weak value of a positive observable. It is related to negative values of the Margenau-Hill quasi-probability distribution.
When two objects at different temperatures are separated by a vacuum gap they can exchange heat by radiation only. At large separation distances (far-field regime) the amount of transferred heat flux is limited by Stefan-Boltzmanns law (blackbody lim it). In contrast, at subwavelength distances (near-field regime) this limit can be exceeded by orders of magnitude thanks to the contributions of evanescent waves. This article reviews the recent progress on the passive and active control of near-field radiative heat exchange in two- and many-body systems.
There have been many proposed explanations for the larger-than-expected radii of some transiting hot Jupiters, including either stellar or orbital energy deposition deep in the atmosphere or deep in the interior. In this paper, we explore the importa nt influences on hot-Jupiter radius evolution of (i) additional heat sources in the high atmosphere, the deep atmosphere, and deep in the convective interior; (ii) consistent cooling of the deep interior through the planetary dayside, nightside, and poles; (iii) the degree of heat redistribution to the nightside; and (iv) the presence of an upper atmosphere absorber inferred to produce anomalously hot upper atmospheres and
This contribution summarizes the splinter session Non-thermal processes in coronae and beyond held at the Cool Stars 17 workshop in Barcelona in 2012. It covers new developments in high energy non-thermal effects in the Earths exosphere, solar and st ellar flares, the diffuse emission in star forming regions and reviews the state and the challenges of the underlying atomic databases.
Systems of many nanoparticles or volume-discretized bodies exhibit collective radiative properties that could be used for enhanced, guided, or tunable thermal radiation. These are commonly treated as assemblies of point dipoles with interactions desc ribed by Maxwells equations and thermal fluctuations correlated by the fluctuation-dissipation theorem. Here, we unify different theoretical descriptions of these systems and provide a complete derivation of many-dipole thermal radiation, showing that the correct use of the fluctuation-dissipation theorem depends on the definitions of fluctuating and induced dipole moments. We formulate a method to calculate the diffusive radiative thermal conductivity of arbitrary collections of nanoparticles; this allows the comparison of thermal radiation to other heat transfer modes and across different material systems. We calculate the radiative thermal conductivity of ordered and disordered arrays of SiC and SiO2 nanoparticles and show that thermal radiation can significantly contribute to thermal transport in these systems. We validate our calculations by comparison to the exact solution for a one-dimensional particle chain, and we demonstrate that the dipolar approximation significantly underpredicts the exact results at separation distances less than the particle radius.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا