ترغب بنشر مسار تعليمي؟ اضغط هنا

Single-contact pressure solution creep on calcite monocrystals

356   0   0.0 ( 0 )
 نشر من قبل Francois Renard
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Sergei Zubtsov




اسأل ChatGPT حول البحث

Pressure solution creep rates and interface structures have been measured by two methods on calcite single crystals. In the first kind of experiments, calcite monocrystals were indented at 40 degrees C for six weeks using ceramic indenters under stresses in the 50-200 MPa range in a saturated solution of calcite and in a calcite-saturated aqueous solution of NH4Cl. The deformation (depth of the hole below the indenter) is measured ex-situ at the end of the experiment. In the second type of experiment, calcite monocrystals were indented by spherical glass indenters for 200 hours under stresses in the 0-100 MPa range at room temperature in a saturated aqueous solution of calcite. The displacement of the indenter was continuously recorded using a specially constructed differential dilatometer. The experiments conducted in a calcite-saturated aqueous solution of NH4Cl show an enhanced indentation rate owing to the fairly high solubility of calcite in this solution. In contrast, the experiments conducted in a calcite-saturated aqueous solution show moderate indentation rate and the dry control experiments did not show any measurable deformation. The rate of calcite indentation is found to be inversely proportional to the indenter diameter, thus indicating that the process is diffusion-controlled. The microcracks in the dissolution region under the indenter dramatically enhance the rate of calcite indentation by a significant reduction of the distance of solute transport in the trapped fluid phase. This result indicates that care should be taken in extrapolating the kinetic data of pressure solution creep from one mineral to another.

قيم البحث

اقرأ أيضاً

457 - Francois Renard 2008
When carbon dioxide (CO2) is injected into an aquifer or a depleted geological reservoir, its dissolution into solution results in acidification of the pore waters. As a consequence, the pore waters become more reactive, which leads to enhanced disso lution-precipitation processes and a modification of the mechanical and hydrological properties of the rock. This effect is especially important for limestones given that the solubility and reactivity of carbonates is strongly dependent on pH and the partial pressure of CO2. The main mechanism that couples dissolution, precipitation and rock matrix deformation is commonly referred to as intergranular pressure solution creep (IPS) or pervasive pressure solution creep (PSC). This process involves dissolution at intergranular grain contacts subject to elevated stress, diffusion of dissolved material in an intergranular fluid, and precipitation in pore spaces subject to lower stress. This leads to an overall and pervasive reduction in porosity due to both grain indentation and precipitation in pore spaces. The percolation of CO2-rich fluids may influence on-going compaction due to pressure solution and can therefore potentially affect the reservoir and its long-term CO2 storage capacity. We aim at quantifying this effect by using a 2D numerical model to study the coupling between dissolution-precipitation processes, local mass transfer, and deformation of the rock over long time scales. We show that high partial pressures of dissolved CO2 (up to 30 MPa) significantly increase the rates of compaction by a factor of ~ 50 to ~ 75, and also result in a concomitant decrease in the viscosity of the rock matrix.
The formation of solid calcium carbonate (CaCO3) from aqueous solutions or slurries containing calcium and carbon dioxide (CO2) is a complex process of considerable importance in the ecological, geochemical and biological areas. Moreover, the demand for powdered CaCO3 has increased considerably recently in various fields of industry. The aim of this study was therefore to synthesize fine particles of calcite with controlled morphology by hydrothermal carbonation of calcium hydroxide at high CO2 pressure (initial PCO2=55 bar) and at moderate and high temperature (30 and 90 degrees C). The morphology of precipitated particles was identified by transmission electron microscopy (TEM/EDS) and scanning electron microscopy (SEM/EDS). In addition, an X-ray diffraction analysis was performed to investigate the carbonation efficiency and purity of the solid product. Carbonation of dispersed calcium hydroxide in the presence of supercritical (PT=90 bar, T=90 degrees C) or gaseous (PT=55 bar, T=30 degrees C) CO2 led to the precipitation of sub-micrometric isolated particles (<1$mu$m) and micrometric agglomerates (<5$mu$m) of calcite. For this study, the carbonation efficiency (Ca(OH)2-CaCO3 conversion) was not significantly affected by PT conditions after 24 h of reaction. In contrast, the initial rate of calcium carbonate precipitation increased from 4.3 mol/h in the 90bar-90 degrees C system to 15.9 mol/h in the 55bar-30 degrees C system. The use of high CO2 pressure may therefore be desirable for increasing the production rate of CaCO3, carbonation efficiency and purity, to approximately 48 kg/m3h, 95% and 96.3%, respectively in this study. The dissipated heat for this exothermic reaction was estimated by calorimetry to be -32 kJ/mol in the 90bar-90 degrees C system and -42 kJ/mol in the 55bar-30 degrees C system.
197 - F. Gerick , D. Jault , J. Noir 2020
We investigate the pressure torque between the fluid core and the solid mantle arising from magnetohydrodynamic modes in a rapidly rotating planetary core. A two-dimensional reduced model of the core fluid dynamics is developed to account for the non -spherical core-mantle boundary. The simplification of such a quasi-geostrophic model rests on the assumption of invariance of the equatorial components of the fluid velocity along the rotation axis. We use this model to investigate and quantify the axial torques of linear modes, focusing on the torsional Alfven modes (TM) in an ellipsoid. We verify that the periods of these modes do not depend on the rotation frequency. Furthermore, they possess angular momentum resulting in a net pressure torque acting on the mantle. This torque scales linearly with the equatorial ellipticity. We estimate that for the TM calculated here topographic coupling to the mantle is too weak to account for the variations in the Earths length-of-day.
76 - Magali Rossi 2008
Theoretical models of compaction processes, such as for example intergranular pressure-solution (IPS), focus on deformation occurring at the contacts between spherical grains that constitute an aggregate. In order to investigate the applicability of such models, and to quantify the deformation of particles within an aggregate, isostatic experiments were performed in cold-sealed vessels on glass sphere aggregates at 200 MPa confining pressure and 350 degrees C with varying amounts of fluid.
87 - Y. Yang 2017
The dissolution of porous media in a geologic formation induced by the injection of massive amounts of CO2 can undermine the mechanical stability of the formation structure before carbon mineralization takes place. The geomechanical impact of geologi c carbon storage is therefore closely related to the structural sustainability of the chosen reservoir as well as the probability of buoyancy driven CO2 leakage through caprocks. Here we show, with a combination of ex situ nanotomography and in situ microtomography, that the presence of dissolved CO2 in water produces a homogeneous dissolution pattern in natural chalk microstructure. This pattern stems from a greater apparent solubility of chalk and therefore a greater reactive subvolume in a sample. When a porous medium dissolves homogeneously in an imposed flow field, three geomechanical effects were observed: material compaction, fracturing and grain relocation. These phenomena demonstrated distinct feedbacks to the migration of the dissolution front and severely complicated the infiltration instability problem. We conclude that the presence of dissolved CO2 makes the dissolution front less susceptible to spatial and temporal perturbations in the strongly coupled geochemical and geomechanical processes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا