ﻻ يوجد ملخص باللغة العربية
If C is the model category of simplicial presheaves on a site with enough points, with fibrations equal to the global fibrations, then it is well-known that the fibrant objects are, in general, mysterious. Thus, it is not surprising that, when G is a profinite group, the fibrant objects in the model category of discrete G-spectra are also difficult to get a handle on. However, with simplicial presheaves, it is possible to construct an explicit fibrant model for an object in C, under certain finiteness conditions. Similarly, in this paper, we show that if G has finite virtual cohomological dimension and X is a discrete G-spectrum, then there is an explicit fibrant model for X. Also, we give several applications of this concrete model related to closed subgroups of G.
In this thesis we will investigate rational G-spectra for a profinite group G. We will provide an algebraic model for this model category whose injective dimension can be calculated in terms of the Cantor-Bendixson rank of the space of closed subgrou
For a profinite group $G$, let $(text{-})^{hG}$, $(text{-})^{h_dG}$, and $(text{-})^{hG}$ denote continuous homotopy fixed points for profinite $G$-spectra, discrete $G$-spectra, and continuous $G$-spectra (coming from towers of discrete $G$-spectra)
We provide a more economical refined version of Evrards categorical cocylinder factorization of a functor [Ev1,2]. We show that any functor between small categories can be factored into a homotopy equivalence followed by a (co)fibred functor which sa
Let G be a profinite group, {X_alpha}_alpha a cofiltered diagram of discrete G-spectra, and Z a spectrum with trivial G-action. We show how to define the homotopy fixed point spectrum F(Z, holim_alpha X_alpha)^{hG} and that when G has finite virtual
The project of Greenlees et al. on understanding rational G-spectra in terms of algebraic categories has had many successes, classifying rational G-spectra for finite groups, SO(2), O(2), SO(3), free and cofree G-spectra as well as rational toral G-s