ﻻ يوجد ملخص باللغة العربية
We use planar coordinates as well as hyperbolic coordinates to separate the de Sitter spacetime into two parts. These two ways of cutting the de Sitter give rise to two different spatial infinities. For spacetimes which are asymptotic to either half of the de Sitter spacetime, we are able to provide definitions of the total energy, the total linear momentum, the total angular momentum, respectively. And we prove two positive mass theorems, corresponding to these two sorts of spatial infinities, for spacelike hypersurfaces whose mean curvatures are bounded by certain constant from above.
We provide a prescription to compute the gravitational multipole moments of compact objects for asymptotically de Sitter spacetimes. Our prescription builds upon a recent definition of the gravitational multipole moments in terms of Noether charges a
Maximally symmetric curved-brane solutions are studied in dilatonic braneworld models which realise the self-tuning of the effective four-dimensional cosmological constant. It is found that no vacua in which the brane has de Sitter or anti-de Sitter
Bubbles of nothing are a class of vacuum decay processes present in some theories with compactified extra dimensions. We investigate the existence and properties of bubbles of nothing in models where the scalar pseudomoduli controlling the size of th
This paper considers boundary value problems for a class of singular elliptic operators which appear naturally in the study of asymptotically anti-de Sitter (aAdS) spacetimes. These problems involve a singular Bessel operator acting in the normal dir
$CPT$ groups for spinor fields in de Sitter and anti-de Sitter spaces are defined in the framework of automorphism groups of Clifford algebras. It is shown that de Sitter spaces with mutually opposite signatures correspond to Clifford algebras with d