ﻻ يوجد ملخص باللغة العربية
A magnetic inclusion inside a superconductor gives rise to a fascinating complex of {it vortex loops}. Our calculations, done in the framework of the Ginzburg-Landau theory, reveal that {it loops always nucleate in triplets} around the magnetic core. In a mesoscopic superconducting sphere, the final superconducting state is characterized by those confined vortex loops and the ones that eventually spring to the surface of the sphere, evolving into {it vortex pairs} piercing through the sample surface.
We numerically study the electronic structure of a single vortex in two dimensional superconducting bilayer systems within the range of the mean-field theory. The lack of local inversion symmetry in the system is taken into account through the layer
We theoretically investigate the quasiparticle scattering rate $varGamma$ inside a vortex core in the existence of non-magnetic impurities distributed randomly in a superconductor. We show that the dependence of $varGamma$ on the magnetic field direc
Recently, we showed that the self-field transport critical current, Ic(sf), of a superconducting wire can be defined in a more fundamental way than the conventional (and arbitrary) electric field criterion, Ec = 1 microV/cm. We defined Ic(sf) as the
In type-II superconductors that contain a lattice of magnetic moments, vortices polarize the magnetic system inducing additional contributions to the vortex mass, vortex viscosity, and vortex-vortex interaction. Extra magnetic viscosity is caused by
In 1976 Larkin and Ovchinnikov [Sov. Phys. JETP 41, 960 (1976)] predicted that vortex matter in superconductors driven by an electrical current can undergo an abrupt dynamic transition from a flux-flow regime to a more dissipative state at sufficient