ﻻ يوجد ملخص باللغة العربية
In 1976 Larkin and Ovchinnikov [Sov. Phys. JETP 41, 960 (1976)] predicted that vortex matter in superconductors driven by an electrical current can undergo an abrupt dynamic transition from a flux-flow regime to a more dissipative state at sufficiently high vortex velocities. Typically this transition manifests itself as a large voltage jump at a particular current density, so-called instability current density $J^*$, which is smaller than the depairing current. By tuning the effective pinning strength in Al films, using an artificial periodic pinning array of triangular holes, we show that a unique and well defined instability current density exists if the pinning is strong, whereas a series of multiple voltage transitions appear in the relatively weaker pinning regime. This behavior is consistent with time-dependent Ginzburg-Landau simulations, where the multiple-step transition can be unambiguously attributed to the progressive development of vortex chains and subsequently phase-slip lines. In addition, we explore experimentally the magnetic braking effects, caused by a thick Cu layer deposited on top of the superconductor, on the instabilities and the vortex ratchet effect
The orientation and deformation of moving vortex lattices in the flux-flow state have been investigated in amorphous superconducting NbGe thin films. Employing a mode-locking technique, we detect how moving lattices deform and their orientation chang
Transport studies in a Corbino disk geometry suggest that the Bragg glass phase undergoes a first-order transition into a disordered solid. This transition shows a sharp reentrant behavior at low fields. In contrast, in the conventional strip configu
We investigate theoretically vortex-antivortex (v-av) matter moving in thin superconducting films with a regular array of in-plane magnetic dipoles. Our model considers v-av pair creation induced by the local current density generated by the magnetic
Vortex dynamics in superconductors have received a great deal of attention from both fundamental and applied researchers over the past few decades. Because of its critical role in the energy relaxation process of type-II superconductors, vortex dynam
The vortex lattice (VL) symmetry and orientation in clean type-II superconductors depends sensitively on the host material anisotropy, vortex density and temperature, frequently leading to rich phase diagrams. Typically, a well-ordered VL is taken to