ﻻ يوجد ملخص باللغة العربية
We present angle-resolved photoelectron spectroscopy data probing the electronic structure of the Nd-substituted high-$T_c$ cuprate La$_{1.48}$Nd$_{0.4}$Sr$_{0.12}$CuO$_4$ (Nd-LSCO). Data have been acquired at low and high photon energies, $h u$ = 55 and 500 eV, respectively. Earlier comparable low-energy studies of La$_{1.4-x}$Nd$_{0.6}$Sr$_{x}$CuO$_4$ ($x = 0.10, 0.12, 0.15$) have shown strongly suppressed photoemission intensity, or absence thereof, in large parts of the Brillouin zone. Contrary to these findings we observe spectral weight at all points along the entire Fermi surface contour at low and high photon energies. No signs of strong charge modulations are found. At high photon energy, the Fermi surface shows obvious differences in shape as compared to the low-energy results presented here and in similar studies. The observed difference in shape and the high bulk-sensitivity at this photon energy suggest intrinsic electronic structure differences between the surface and bulk regions.
We report combined soft and hard x-ray scattering studies of the electronic and lattice modulations associated with stripe order in La$_{1.875}$Ba$_{0.125}$CuO$_4$ and La$_{1.48}$Nd$_{0.4}$Sr$_{0.12}$CuO$_4$. We find that the amplitude of both the el
Using polarized neutron scattering we establish that the magnetic order in La$_{1.48}$Nd$_{0.4}$Sr$_{0.12}$CuO$_4$ is either (i) one dimensionally modulated and collinear, consistent with the stripe model or (ii) two dimensionally modulated with a no
The dynamics of charge-ordered states is one of the key issues in underdoped cuprate high-temperature superconductors, but static short-range charge-order (CO) domains have been detected in almost all cuprates. We probe the dynamics across the CO (an
We report an angle-resolved photoemission study of the charge stripe ordered La$_{1.6-x}$Nd$_{0.4}$Sr$_x$CuO$_4$ system. A comparative and quantitative line shape analysis is presented as the system evolves from the overdoped regime into the charge o
The electronic and magnetic properties of epitaxial LaNiO3/LaAlO3 superlattices can be tuned by layer thickness and substrate-induced strain. Here, we report on direct measurements of the k-space-resolved electronic structure of buried nickelate laye