ترغب بنشر مسار تعليمي؟ اضغط هنا

Dimensionality-tuned electronic structure of nickelate superlattices explored by soft-x-ray angle resolved photoelectron spectroscopy

482   0   0.0 ( 0 )
 نشر من قبل G\\\"otz Berner
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The electronic and magnetic properties of epitaxial LaNiO3/LaAlO3 superlattices can be tuned by layer thickness and substrate-induced strain. Here, we report on direct measurements of the k-space-resolved electronic structure of buried nickelate layers in superlattices under compressive strain by soft x-ray photoemission. After disentangling strong extrinsic contributions to the angle-dependent signal caused by photoelectron diffraction, we are able to extract Fermi surface information from our data. We find that with decreasing LaNiO3 thickness down to two unit cells (2 uc) quasiparticle coherence becomes strongly reduced, in accord with the dimension-induced metal-to-insulator transition seen in transport measurements. Nonetheless, on top of a strongly incoherent background a residual Fermi surface can be identified in the 2 uc superlattice whose nesting properties are consistent with the spin-density wave (SDW) instability recently reported. The overall behavior of the Ni 3d spectra and the absence of a complete gap opening indicate that the SDW phase is dominated by strong order parameter fluctuations.


قيم البحث

اقرأ أيضاً

Soft and hard X-ray photoelectron spectroscopy (PES) has been performed for one of the heavy fermion system CeRu$_2$Si$_2$ and a $4f$-localized ferromagnet CeRu$_2$Ge$_2$ in the paramagnetic phase. The three-dimensional band structures and Fermi surf ace (FS) shapes of CeRu$_2$Si$_2$ have been determined by soft X-ray $h u$-dependent angle resolved photoelectron spectroscopy (ARPES). The differences in the Fermi surface topology and the non-$4f$ electronic structures between CeRu$_2$Si$_2$ and CeRu$_2$Ge$_2$ are qualitatively explained by the band-structure calculation for both $4f$ itinerant and localized models, respectively. The Ce valences in CeRu$_2X_2$ ($X$ = Si, Ge) at 20 K are quantitatively estimated by the single impurity Anderson model calculation, where the Ce 3d hard X-ray core-level PES and Ce 3d X-ray absorption spectra have shown stronger hybridization and signature for the partial $4f$ contribution to the conduction electrons in CeRu$_2$Si$_2$.
We investigated LAO - STO heterointerfaces grown either in oxygen rich or poor atmosphere by soft x-ray spectroscopy. Resonant photoemission across the Ti L$_{2,3}$ absorption edge of the valence band and Ti 2p core level spectroscopy directly monito r the impact of oxygen treatment upon the electronic structure. Two types of Ti$^{3+}$ related charge carriers are identified. One is located at the Fermi energy and related to the filling of the STO conduction band. It appears for low oxygen pressure only. The other one is centered at E$_{B}$ $approx$ 1 eV and independent of the oxygen pressure during growth. It is probably due to defects. The magnitude of both excitations is comparable. It is shown that low oxygen pressure is detrimental for the Ti - O bonding. Our results shed light on the nature of the charge carriers in the vicinity of the LAO - STO interface.
We demonstrate that angle-resolved soft x-ray spectroscopy can resolve absorption by inequivalent oxygen sites and by different orbitals belonging to the same site in NaV2O5. By rotating the polarization direction, we see a dramatic change in the abs orption spectra at the oxygen K edge. Our theory identifies the detailed composition of the spectra and predicts a correct energy-ordering of the orbitals of three inequivalent oxygen atoms. Because different orbitals dominate absorption spectra at different energies and angles, one can excite at a specific site and ``orbital. In contrast, absorption at the vanadium L edge does not show large changes when varying the polarization direction. The reason for this is that different excitation channels (involving different initial states for the excited electron) overlap in energy and vary in compensating ways, obscuring each channels sensitive polarization dependence.
100 - Q. Yao , Y. P. Du , X. J. Yang 2016
PtBi2 with a layered trigonal crystal structure was recently reported to exhibit an unconventional large linear magnetoresistance, while the mechanism involved is still elusive. Using high resolution angle-resolved photoemission spectroscopy, we pres ent a systematic study on its bulk and surface electronic structure. Through careful comparison with first-principle calculations, our experiment distinguishes the low-lying bulk bands from entangled surface states, allowing the estimation of the real stoichiometry of samples. We find significant electron doping in PtBi2, implying a substantial Bi deficiency induced disorder therein. We discover a Dirac-cone-like surface state on the boundary of the Brillouin zone, which is identified as an accidental Dirac band without topological protection. Our findings exclude quantum-limit-induced linear band dispersion as the cause of the unconventional large linear magnetoresistance.
We present a soft X-ray angle-resolved photoemission spectroscopy (SX-ARPES) study of the stoichiometric pnictide superconductor LaRu2P2. The observed electronic structure is in good agreement with density functional theory (DFT) calculations. Howeve r, it is significantly different from its counterpart in high-temperature superconducting Fe-pnictides. In particular the bandwidth renormalization present in the Fe-pnictides (~2 - 3) is negligible in LaRu2P2 even though the mass enhancement is similar in both systems. Our results suggest that the superconductivity in LaRu2P2 has a different origin with respect to the iron pnictides. Finally we demonstrate that the increased probing depth of SX-ARPES, compared to the widely used ultraviolet ARPES, is essential in determining the bulk electronic structure in the experiment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا