ﻻ يوجد ملخص باللغة العربية
In order to enlarge the present arsenal of semiclassical toools we explicitly obtain here the Husimi distributions and Wehrl entropy within the context of deformed algebras built up on the basis of a new family of q-deformed coherent states, those of Quesne [J. Phys. A 35, 9213 (2002)]. We introduce also a generalization of the Wehrl entropy constructed with escort distributions. The two generalizations are investigated with emphasis on i) their behavior as a function of temperature and ii) the results obtained when the deformation-parameter tends to unity.
We derive a class of mesoscopic virial equations governing energy partition between conjugate position and momentum variables of individual degrees of freedom. They are shown to apply to a wide range of nonequilibrium steady states with stochastic (L
Recently, we have presented some simple arguments supporting the existence of certain complementarity between thermodynamic quantities of temperature and energy, an idea suggested by Bohr and Heinsenberg in the early days of Quantum Mechanics. Such a
These lectures were prepared for the 2014 PCMI graduate summer school and were designed to be a lightweight introduction to statistical mechanics for mathematicians. The applications feature some of the themes of the summer school: sphere packings and tilings.
The local equilibrium approach previously developed by the Authors [J. Mabillard and P. Gaspard, J. Stat. Mech. (2020) 103203] for matter with broken symmetries is applied to crystalline solids. The macroscopic hydrodynamics of crystals and their loc
Noethers calculus of invariant variations yields exact identities from functional symmetries. The standard application to an action integral allows to identify conservation laws. Here we rather consider generating functionals, such as the free energy