ترغب بنشر مسار تعليمي؟ اضغط هنا

Disappearance of the metal-like behavior in GaAs two-dimensional holes below 30 mK

134   0   0.0 ( 0 )
 نشر من قبل Jian Huang
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The zero-field temperature-dependence of the resistivity of two-dimensional holes are observed to exhibit two qualitatively different characteristics for a fixed carrier density for which only the metallic behavior of the so-called metal-insulator transition is anticipated. As $T$ is lowered from 150 mK to 0.5 mK, the sign of the derivative of the resistivity with respect to $T$ changes from being positive to negative when the temperature is lowered below $sim$30 mK and the resistivity continuously rises with cooling down to 0.5 mK, suggesting a crossover from being metal-like to insulator-like.

قيم البحث

اقرأ أيضاً

CDW/Normal metal/CDW junctions and nanoconstrictions in crystals of the quasi-one-dimensional conductor NbSe$_3$ are manufactured using a focused-ion-beam. It is found that the low-temperature conduction of these structures changes dramatically and l oses the features of the charge-density-wave transition. Instead, a dielectric phase is developed. Up to 6-order power-law variations of the conduction as a function of both temperature and electric field can be observed for this new phase. The transition from quasi-one-dimensional behavior to one-dimensional behavior is associated with destruction of the three-dimensional order of the charge-density waves by fluctuations. It results in a recovery of the Luttinger-liquid properties of metallic chains, like it takes place in sliding Luttinger liquid phase.
We have measured the resistance noise of a two-dimensional (2D)hole system in a high mobility GaAs quantum well, around the 2D metal-insulator transition (MIT) at zero magnetic field. The normalized noise power $S_R/R^2$ increases strongly when the h ole density p_s is decreased, increases slightly with temperature (T) at the largest densities, and decreases strongly with T at low p_s. The noise scales with the resistance, $S_R/R^2 sim R^{2.4}$, as for a second order phase transition such as a percolation transition. The p_s dependence of the conductivity is consistent with a critical behavior for such a transition, near a density p* which is lower than the observed MIT critical density p_c.
Reports of weak local minima in the magnetoresistance at $ u=2+3/5$, $2+3/7$, $2+4/9$, $2+5/9$, $2+5/7$, and $2+5/8$ in the second Landau level of the electron gas in GaAs/AlGaAs left open the possibility of fractional quantum Hall states at these fi lling factors. In a high quality sample we found that the magnetoresistance exhibits peculiar features near these filling factors of interest. These features, however, cannot be associated with fractional quantum Hall states; instead they originate from magnetoresistive fingerprints of the electronic bubble phases. We found only two exceptions: at $ u=2+2/7$ and $2+5/7$ there is evidence for incipient fractional quantum Hall states at intermediate temperatures. As the temperature is lowered, these fractional quantum Hall states collapse due to a phase competition with bubble phases.
125 - O. Gunawan , T. Gokmen , K. Vakili 2006
Using symmetry breaking strain to tune the valley occupation of a two-dimensional (2D) electron system in an AlAs quantum well, together with an applied in-plane magnetic field to tune the spin polarization, we independently control the systems valle y and spin degrees of freedom and map out a spin-valley phase diagram for the 2D metal-insulator transition. The insulating phase occurs in the quadrant where the system is both spin- and valley-polarized. This observation establishes the equivalent roles of spin and valley degrees of freedom in the 2D metal-insulator transition.
We report the observation of a re-entrant insulator--metal--insulator transition at B=0 in a two dimensional (2D) hole gas in GaAs at temperatures down to 30mK. At the lowest carrier densities the holes are strongly localised. As the carrier density is increased a metallic phase forms, with a clear transition at sigma = ~5e^2/h. Further increasing the density weakens the metallic behaviour, and eventually leads to the formation of a second insulating state for sigma > ~50e^2/h. In the limit of high carrier densities, where k_F.l is large and r_s is small, we thus recover the results of previous work on weakly interacting systems showing the absence of a metallic state in 2D.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا