ﻻ يوجد ملخص باللغة العربية
Hot core molecules should be detectable in external active galaxies out to high redshift. We present here a detailed study of the chemistry of star-forming regions under physical conditions that differ significantly from those likely to be appropriate in the Milky Way Galaxy. We examine, in particular, the trends in molecular abundances as a function of time with respect to changes in the relevant physical parameters. These parameters include metallicity, dust:gas mass ratio, the H$_{2}$ formation rate, relative initial elemental abundances, the cosmic ray ionization rate, and the temperature of hot cores. These trends indicate how different tracers provide information on the physical conditions and on evolutionary age. We identify hot core tracers for several observed galaxies that are considered to represent spirals, active galaxies, low-metallicity galaxies, and high-redshift galaxies. Even in low-metallicity examples, many potential molecular tracers should be present at levels high enough to allow unresolved detection of active galaxies at high redshift containing large numbers of hot cores.
Star cluster formation is a major mode of star formation in the extreme conditions of interacting galaxies and violent starbursts. These newly-formed clusters are built from recycled gas, pre-enriched to various levels within the interacting galaxies
[Abridged] We combine new CO(1-0) line observations of 24 intermediate redshift galaxies (0.03 < z < 0.28) along with literature data of galaxies at 0<z<4 to explore scaling relations between the dust and gas content using PAH 6.2 $mu$m ($L_{6.2}$),
We study the star formation and the mass assembly process of 0.3<=z<2.5 galaxies using their IR emission from MIPS 24um band. We used an updated version of the GOODS-MUSIC catalog, extended by the addition of mid-IR fluxes. We compared two different
We study the star formation (SF) law in 12 Galactic molecular clouds with ongoing high-mass star formation (HMSF) activity, as traced by the presence of a bright IRAS source and other HMSF tracers. We define the molecular cloud (MC) associated to eac
Background: low-mass stars are the dominant product of the star formation process, and they trace star formation over the full range of environments, from isolated globules to clusters in the central molecular zone. In the past two decades, our under