ترغب بنشر مسار تعليمي؟ اضغط هنا

PAHs as tracers of the molecular gas in star-forming galaxies

90   0   0.0 ( 0 )
 نشر من قبل Isabella Cortzen
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

[Abridged] We combine new CO(1-0) line observations of 24 intermediate redshift galaxies (0.03 < z < 0.28) along with literature data of galaxies at 0<z<4 to explore scaling relations between the dust and gas content using PAH 6.2 $mu$m ($L_{6.2}$), CO ($L_{rm CO}$), and infrared ($L_{rm IR}$) luminosities for a wide range of redshifts and physical environments. Our analysis confirms the existence of a universal $L_{6.2}-L_{rm CO}$ correlation followed by normal star-forming galaxies (SFGs) and starbursts (SBs) at all redshifts. This relation is also followed by local ULIRGs that appear as outliers in the $L_{6.2}-L_{rm IR}$ and $L_{rm IR}-L_{rm CO}$ relations from the sequence defined by normal SFGs. The emerging tight ($sigma approx 0.26$ dex) and linear ($alpha = 1.03$) relation between $L_{6.2}$ and $L_{rm CO}$ indicates a $L_{6.2}$ to molecular gas ($M_{rm H_2}$) conversion factor of $alpha_{6.2} = M_{rm H2}/L_{6.2} = (2.7pm1.3) times alpha_{rm CO}$, where $alpha_{rm CO}$ is the $L_{rm CO}$ to $M_{rm H_2}$ conversion factor. We also find that on galaxy integrated scales, PAH emission is better correlated with cold rather than with warm dust emission, suggesting that PAHs are associated with the diffuse cold dust, which is another proxy for $M_{rm H_2}$. Focusing on normal SFGs among our sample, we employ the dust continuum emission to derive $M_{rm H_2}$ estimates and find a constant $M_{rm H_2}/L_{6.2}$ ratio of $alpha_{6.2} = 12.3 M_{rm H_2}/{rm L}_{odot}$ ($sigmaapprox 0.3$ dex). We propose that the presented $L_{6.2}-L_{rm CO}$ and $L_{6.2}-M_{rm H_2}$ relations will serve as useful tools for the determination of the physical properties of high-$z$ SFGs, for which PAH emission will be routinely detected by the James Webb Space Telescope.


قيم البحث

اقرأ أيضاً

109 - Qian Jiao 2017
We present a statistical study on the [C I]($^{3} rm P_{1} rightarrow {rm ^3 P}_{0}$), [C I] ($^{3} rm P_{2} rightarrow {rm ^3 P}_{1}$) lines (hereafter [C I] (1$-$0) and [C I] (2$-$1), respectively) and the CO (1$-$0) line for a sample of (ultra)lum inous infrared galaxies [(U)LIRGs]. We explore the correlations between the luminosities of CO (1$-$0) and [C I] lines, and find that $L_mathrm{CO(1-0)}$ correlates almost linearly with both $L_ mathrm{[CI](1-0)}$ and $L_mathrm{[CI](2-1)}$, suggesting that [C I] lines can trace total molecular gas mass at least for (U)LIRGs. We also investigate the dependence of $L_mathrm{[CI](1-0)}$/$L_mathrm{CO(1-0)}$, $L_mathrm{[CI](2-1)}$/$L_mathrm{CO(1-0)}$ and $L_mathrm{[CI](2-1)}$/$L_mathrm{[CI](1-0)}$ on the far-infrared color of 60-to-100 $mu$m, and find non-correlation, a weak correlation and a modest correlation, respectively. Under the assumption that these two carbon transitions are optically thin, we further calculate the [C I] line excitation temperatures, atomic carbon masses, and the mean [C I] line flux-to-H$_2$ mass conversion factors for our sample. The resulting $mathrm{H_2}$ masses using these [C I]-based conversion factors roughly agree with those derived from $L_mathrm{CO(1-0)}$ and CO-to-H$_2$ conversion factor.
The young stellar population of a star-forming galaxy is the primary engine driving its radiative properties. As a result, the age of a galaxys youngest generation of stars is critical for a detailed understanding of its star formation history, stell ar content, and evolutionary state. Here we present predicted equivalent widths for the H-beta, H-alpha, and Br-gamma recombination lines as a function of stellar population age. The equivalent widths are produced by the latest generations of stellar evolutionary tracks and the Starburst99 stellar population synthesis code, and are the first to fully account for the combined effects of both nebular emission and continuum absorption produced by the synthetic stellar population. Our grid of model stellar populations spans six metallicities (0.001 < Z < 0.04), two treatments of star formation history (a 10^6 Mo instantaneous burst and a continuous star formation rate of 1 Mo/yr), and two different treatments of initial rotation rate (v_rot = 0.0v_crit and 0.4v_crit). We also investigate the effects of varying the initial mass function. Given constraints on galaxy metallicity, our predicted equivalent widths can be applied to observations of star-forming galaxies to approximate the age of their young stellar populations.
We perform a joint-analysis of high spatial resolution molecular gas and star-formation rate (SFR) maps in main-sequence star-forming galaxies experiencing galactic-scale outflows of ionised gas. Our aim is to understand the mechanism that determines which galaxies are able to launch these intense winds. We observed CO(1-0) at 1 resolution with ALMA in 16 edge-on galaxies, which also have 2 spatial resolution optical integral field observations from the SAMI Galaxy Survey. Half the galaxies in the sample were previously identified as harbouring intense and large-scale outflows of ionised gas (outflow-types), the rest serve as control galaxies. The dataset is complemented by integrated CO(1-0) observations from the IRAM 30-m telescope to probe the total molecular gas reservoirs. We find that the galaxies powering outflows do not possess significantly different global gas fractions or star-formation efficiencies when compared with a control sample. However, the ALMA maps reveal that the molecular gas in the outflow-type galaxies is distributed more centrally than in the control galaxies. For our outflow-type objects, molecular gas and star-formation is largely confined within their inner effective radius ($rm r_{eff}$), whereas in the control sample the distribution is more diffuse, extending far beyond $rm r_{eff}$. We infer that outflows in normal star-forming galaxies may be caused by dynamical mechanisms that drive molecular gas into their central regions, which can result in locally-enhanced gas surface density and star-formation.
A series of gravitational instabilities in a circumnuclear gas disk (CND) are required to trigger gas transport to a central supermassive black hole (SMBH) and ignite Active Galactic Nuclei (AGNs). A test of this scenario is to investigate whether an enhanced molecular gas mass surface density ($Sigma_{rm mol}$) is found in the CND-scale of quasars relative to a comparison sample of inactive galaxies. Here we performed sub-kpc resolution CO(2-1) observations with ALMA of four low-redshift ($z sim 0.06$), luminous ($sim 10^{45}$ erg s$^{-1}$) quasars with each matched to a different star-forming galaxy, having similar redshift, stellar mass, and star-formation rate. We detected CO(2-1) emission from all quasars, which show diverse morphologies. Contrary to expectations, $Sigma_{rm mol}$ of the quasar sample, computed from the CO(2-1) luminosity, tends to be smaller than the comparison sample at $r < 500$ pc; there is no systematic enhancement of $Sigma_{rm mol}$ in our quasars. We discuss four possible scenarios that would explain the lower molecular gas content (or CO(2-1) luminosity as an actual observable) at the CND-scale of quasars, i.e., AGN-driven outflows, gas-rich minor mergers, time-delay between the onsets of a starburst-phase and a quasar-phase, and X-ray-dominated region (XDR) effects on the gas chemical abundance and excitation. While not extensively discussed in the literature, XDR effects can have an impact on molecular mass measurements particularly in the vicinity of luminous quasar nuclei; therefore higher resolution molecular gas observations, which are now viable using ALMA, need to be considered.
Lyman break analogues (LBAs) are a population of star-forming galaxies at low redshift (z ~ 0.2) selected in the ultraviolet (UV). These objects present higher star formation rates and lower dust extinction than other galaxies with similar masses and luminosities in the local universe. In this work we present results from a survey with the Combined Array for Research in Millimetre-wave Astronomy (CARMA) to detect CO(1-0) emission in LBAs, in order to analyse the properties of the molecular gas in these galaxies. Our results show that LBAs follow the same Schmidt-Kennicutt law as local galaxies. On the other hand, they have higher gas fractions (up to 66%) and faster gas depletion time-scales (below 1 Gyr). These characteristics render these objects more akin to high-redshift star-forming galaxies. We conclude that LBAs are a great nearby laboratory for studying the cold interstellar medium in low-metallicity, UV-luminous compact star-forming galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا