ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantitative broadband chemical sensing in air-suspended solid-core fibers

301   0   0.0 ( 0 )
 نشر من قبل Tijmen Euser
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate a quantitative broadband fiber sensor, based on evanescent field sensing in the cladding holes of an air-suspended solid-core photonic crystal fiber. We discuss the fabrication process, together with the structural- and optical characterization of a range of different fibers. Measured mode profiles are in good agreement with finite element method calculations made without free parameters. The fraction of the light in the hollow cladding can be tuned via the core diameter of the fiber. Dispersion measurements are in excellent agreement with theory and demonstrate tuning of the zero dispersion wavelength via the core diameter. Optimum design parameters for absorption sensors are discussed using a general parameter diagram. From our analysis, we estimate that a sensitivity increase of three orders of magnitude is feasible compared to standard cuvette measurements. Our study applies to both liquid and gas fiber sensors. We demonstrate the applicability of our results to liquid chemical sensing by measuring the broad absorption peak of an aqueous nickel chloride solution. We find striking agreement with the reference spectrum measured in a standard cuvette, even though the sample volume has decreased by three orders of magnitude. Our results demonstrate that air-suspended solid-core PCFs can be used in quantitative broadband chemical sensing measurements.

قيم البحث

اقرأ أيضاً

We investigate intermodal forward Brillouin scattering in a solid-core PCF, demonstrating efficient power conversion between the HE11 and HE21 modes, with a maximum gain coefficient of 21.4/W/km. By exploring mechanical modes of different symmetries, we observe both polarization-dependent and polarization-independent intermodal Brillouin interaction. Finally, we discuss the role of squeeze film air damping and leakage mechanisms, ultimately critical to the engineering of PCF structures with enhanced interaction between high order optical modes through flexural mechanical modes.
We investigate supercontinuum generation in several suspended-core soft-glass photonic crystal fibers pumped by an optical parametric oscillator tunable around 1550 nm. The fibers were drawn from lead-bismuth-gallium-cadmium-oxide glass (PBG-81) with a wide transmission window from 0.5-2.7 micron and a high nonlinear refractive index up to 4.3.10^(-19) m^2/W. They have been specifically designed with a microscale suspended hexagonal core for efficient supercontinuum generation around 1550 nm. We experimentally demonstrate two supercontinuum spectra spanning from 1.07-2.31 micron and 0.89-2.46 micron by pumping two PCFs in both normal and anomalous dispersion regimes, respectively. We also numerically model the group velocity dispersion curves for these fibers from their scanning electron microscope images. Results are in good agreement with numerical simulations based on the generalized nonlinear Schrodinger equation including the pump frequency chirp.
We propose the use of a silicon-core optical fiber for terahertz (THz) waveguide applications. Finite-difference time-domain simulations have been performed based on a cylindrical waveguide with a silicon core and silica cladding. High-resistivity si licon has a flat dispersion over a 0.1 - 3 THz range, making it viable for propagation of tunable narrowband CW THz and possibly broadband picosecond pules of THz radiation. Simulations show the propagation dynamics and the integrated intensity, from which transverse mode profiles and absorption lengths are extraced. It is found that for 140 - 250 micron core diameters the mode is primarily confined to the core, such that the overall absorbance is only slightly less than in bulk polycrystalline silicon.
We report enhanced broadband Terahertz (THz) generation and detailed characterization from the interaction of femtosecond two colour laser pulses with thin transparent dielectric tape target in ambient air. The proposed source is easy to implement, e xhibits excellent scalability with laser energy. Spectral characterization using Fourier transform spectrometer reveals yield enhancement of more than 150 % in the THz region of 0.1 - 10 THz with respect to conventional two-colour laser plasma source in ambient air. Further, the source spectrum extends up to 40 THz with an enhancement of flux > 30 %. Experimental results, well supported with two-dimensional particle-in-cell simulations establishes that the transient photo-current produced by the asymmetric laser pulse interaction with air plasma as well as near solid density plasma formed on the tape surface is responsible for the enhanced terahertz generation. The source will be useful for the multidisciplinary activities and ongoing applications of the laboratory-based terahertz sources.
128 - J. H. Li 2012
Previous studies of the modulation instability (MI) of continuous waves (CWs) in a two-core fiber (TCF) did not consider effects caused by co-propagation of the two polarized modes in a TCF that possesses birefringence, such as cross-phase modulation (XPM), polarization-mode dispersion (PMD), and polarization-dependent coupling (PDC) between the cores. This paper reports an analysis of these effects on the MI by considering a linear-birefringence TCF and a circular-birefringence TCF, which feature different XPM coefficients. The analysis focuses on the MI of the asymmetric CW states in the TCFs, which have no counterparts in single-core fibers. We find that, the asymmetric CW state exists when its total power exceeds a threshold (minimum) value, which is sensitive to the value of the XPM coefficient. We consider, in particular, a class of asymmetric CW states that admit analytical solutions. In the anomalous dispersion regime, without taking the PMD and PDC into account, the MI gain spectra of the birefringent TCF, if scaled by the threshold power, are almost identical to those of the zero-birefringence TCF. However, in the normal dispersion regime, the power-scaled MI gain spectra of the birefringent TCFs are distinctly different from their zero-birefringence counterparts, and the difference is particularly significant for the circular-birefringence TCF, which takes a larger XPM coefficient. On the other hand, the PMD and PDC only exert weak effects on the MI gain spectra. We also simulate the nonlinear evolution of the MI of the CW inputs in the TCFs and obtain a good agreement with the analytical solutions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا