ترغب بنشر مسار تعليمي؟ اضغط هنا

Lifting to cluster-tilting objects in 2-Calabi-Yau triangulated categories

394   0   0.0 ( 0 )
 نشر من قبل Pin Liu
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that a tilting module over the endomorphism algebra of a cluster-tilting object in a 2-Calabi-Yau triangulated category lifts to a cluster-tilting object in this 2-Calabi-Yau triangulated category. This generalizes a recent work of D. Smith for cluster categories.



قيم البحث

اقرأ أيضاً

209 - Pin Liu 2008
In this note, we consider the $d$-cluster-tilted algebras, the endomorphism algebras of $d$-cluster-tilting objects in $d$-cluster categories. We show that a tilting module over such an algebra lifts to a $d$-cluster-tilting object in this $d$-cluster category.
As a generalization of acyclic 2-Calabi-Yau categories, we consider 2-Calabi-Yau categories with a directed cluster-tilting subcategory; we study their cluster-tilting subcategories and the cluster combinatorics that they encode. We show that such ca tegories have a cluster structure. Triangulated 2-Calabi-Yau categories with a directed cluster-tilting subcategory are closely related to representations of certain semi-hereditary categories, more specifically to representations of thread quivers. Thread quivers are a tool to classify and study certain semi-hereditary categories using both quivers and linearly ordered sets (threads). We study the case where the thread quiver consists of a single thread (so that representations of this thread quiver correspond to representations of some linearly ordered set), and show that, similar to the case of a Dynkin quiver of type $A$, the cluster-tilting subcategories can be understood via triangulations of an associated cyclically ordered set. In this way, we gain insight into the structure of the cluster-tilting subcategories of 2-Calabi-Yau categories with a directed cluster-tilting subcategory. As an application, we show that every 2-Calabi-Yau category which admits a directed cluster-tilting subcategory with countably many isomorphism classes of indecomposable objects has a cluster-tilting subcategory $mathcal{V}$ with the following property: any rigid object in the cluster category can be reached from $mathcal{V}$ by finitely many mutations. This implies that there is a cluster map which is defined on all rigid objects, and thus that there is a cluster algebra whose cluster variables are exactly given by the rigid indecomposable objects.
Given a triangulated 2-Calabi-Yau category C and a cluster-tilting subcategory T, the index of an object X of C is a certain element of the Grothendieck group of the additive category T. In this note, we show that a rigid object of C is determined by its index, that the indices of the indecomposables of a cluster-tilting subcategory T form a basis of the Grothendieck group of T and that, if T and T are related by a mutation, then the indices with respect to T and T are related by a certain piecewise linear transformation introduced by Fomin and Zelevinsky in their study of cluster algebras with coefficients. This allows us to give a combinatorial construction of the indices of all rigid objects reachable from the given cluster-tilting subcategory T. Conjecturally, these indices coincide with Fomin-Zelevinskys g-vectors.
Building on work by Geiss-Leclerc-Schroer and by Buan-Iyama-Reiten-Scott we investigate the link between certain cluster algebras with coefficients and suitable 2-Calabi-Yau categories. These include the cluster-categories associated with acyclic qui vers and certain Frobenius subcategories of module categories over preprojective algebras. Our motivation comes from the conjectures formulated by Fomin and Zelevinsky in `Cluster algebras IV: Coefficients. We provide new evidence for Conjectures 5.4, 6.10, 7.2, 7.10 and 7.12 and show by an example that the statement of Conjecture 7.17 does not always hold.
267 - Fan Xu 2010
By using the approach in cite{XX2006} to Hall algebras arising in homologically finite triangulated categories, we find an `almost associative multiplication structure for indecomposable objects in a 2-periodic triangulated category. As an applicatio n, we give a new proof of the theorem of Peng and Xiao in cite{PX2000} which provides a way of realizing symmetrizable Kac-Moody algebras and elliptic Lie algebras via 2-periodic triangulated categories.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا