ﻻ يوجد ملخص باللغة العربية
Given a triangulated 2-Calabi-Yau category C and a cluster-tilting subcategory T, the index of an object X of C is a certain element of the Grothendieck group of the additive category T. In this note, we show that a rigid object of C is determined by its index, that the indices of the indecomposables of a cluster-tilting subcategory T form a basis of the Grothendieck group of T and that, if T and T are related by a mutation, then the indices with respect to T and T are related by a certain piecewise linear transformation introduced by Fomin and Zelevinsky in their study of cluster algebras with coefficients. This allows us to give a combinatorial construction of the indices of all rigid objects reachable from the given cluster-tilting subcategory T. Conjecturally, these indices coincide with Fomin-Zelevinskys g-vectors.
We show that a tilting module over the endomorphism algebra of a cluster-tilting object in a 2-Calabi-Yau triangulated category lifts to a cluster-tilting object in this 2-Calabi-Yau triangulated category. This generalizes a recent work of D. Smith for cluster categories.
Building on work by Geiss-Leclerc-Schroer and by Buan-Iyama-Reiten-Scott we investigate the link between certain cluster algebras with coefficients and suitable 2-Calabi-Yau categories. These include the cluster-categories associated with acyclic qui
As a generalization of acyclic 2-Calabi-Yau categories, we consider 2-Calabi-Yau categories with a directed cluster-tilting subcategory; we study their cluster-tilting subcategories and the cluster combinatorics that they encode. We show that such ca
We study periodicity and twisted periodicity of the trivial extension algebra $T(A)$ of a finite-dimensional algebra $A$. We prove that (twisted) periodicity of the trivial extension is equivalent to $A$ being (twisted) fractionally Calabi--Yau. More
In this note, we consider the $d$-cluster-tilted algebras, the endomorphism algebras of $d$-cluster-tilting objects in $d$-cluster categories. We show that a tilting module over such an algebra lifts to a $d$-cluster-tilting object in this $d$-cluster category.