ﻻ يوجد ملخص باللغة العربية
Turbulence is ubiquitous in Solar System planetary atmospheres. In hot Jupiter atmospheres, the combination of moderately slow rotation and thick pressure scale height may result in dynamical weather structures with unusually large, planetary-size scales. Using equivalent-barotropic, turbulent circulation models, we illustrate how such structures can generate a variety of features in the thermal phase curves of hot Jupiters, including phase shifts and deviations from periodicity. Such features may have been spotted in the recent infrared phase curve of HD 189733b. Despite inherent difficulties with the interpretation of disk-integrated quantities, phase curves promise to offer unique constraints on the nature of the circulation regime present on hot Jupiters.
Atmospheric circulation on tidally-locked exoplanets is driven by the absorption and reradiation of heat from the host star. They are natural heat engines, converting heat into mechanical energy. A steady state is possible only if there is a mechanis
We explore the infrared spectrum of a three-dimensional dynamical model of planet HD209458b as a function of orbital phase. The dynamical model predicts day-side atmospheric pressure-temperature profiles that are much more isothermal at pressures les
Photoionization heating from UV radiation incident on the atmospheres of hot Jupiters may drive planetary mass loss. We construct a model of escape that includes realistic heating and cooling, ionization balance, tidal gravity, and pressure confineme
We present results from Spitzer Space Telescope observations of the mid-infrared phase variations of three short-period extrasolar planetary systems: HD 209458, HD 179949 and 51 Peg. We gathered IRAC images in multiple wavebands at eight phases of ea
We observed two full orbital phase curves of the transiting brown dwarf KELT-1b, at 3.6um and 4.5um, using the Spitzer Space Telescope. Combined with previous eclipse data from Beatty et al. (2014), we strongly detect KELT-1bs phase variation as a si