ترغب بنشر مسار تعليمي؟ اضغط هنا

Hot Nights on Extrasolar Planets: Mid-IR Phase Variations of Hot Jupiters

79   0   0.0 ( 0 )
 نشر من قبل Nicolas Cowan
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present results from Spitzer Space Telescope observations of the mid-infrared phase variations of three short-period extrasolar planetary systems: HD 209458, HD 179949 and 51 Peg. We gathered IRAC images in multiple wavebands at eight phases of each planets orbit. We find the uncertainty in relative photometry from one epoch to the next to be significantly larger than the photon counting error at 3.6 micron and 4.5 micron. We are able to place 2-sigma upper limits of only 2% on the phase variations at these wavelengths. At 8 micron the epoch-to-epoch systematic uncertainty is comparable to the photon counting noise and we detect a phase function for HD 179949 which is in phase with the planets orbit and with a relative peak-to-trough amplitude of 0.00141(33). Assuming that HD 179949b has a radius R_J < R_p < 1.2R_J, it must recirculate less than 21% of incident stellar energy to its night side at the 1-sigma level (where 50% signifies full recirculation). If the planet has a small Bond albedo, it must have a mass less than 2.4 M_J (1-sigma). We do not detect phase variations for the other two systems but we do place the following 2-sigma upper limits: 0.0007 for 51 Peg, and 0.0015 for HD 209458. Due to its edge-on configuration, the upper limit for HD 209458 translates, with appropriate assumptions about Bond albedo, into a lower limit on the recirculation occuring in the planets atmosphere. HD 209458b must recirculate at least 32% of incident stellar energy to its night side, at the 1-sigma level, which is consistent with other constraints on recirculation from the depth of secondary eclipse depth at 8 micron and the low optical albedo. These data indicate that different Hot Jupiter planets may experience different recirculation efficiencies.

قيم البحث

اقرأ أيضاً

141 - Jason H. Steffen 2012
We present the results of a search for planetary companions orbiting near hot Jupiter planet candidates (Jupiter-size candidates with orbital periods near 3 days) identified in the Kepler data through its sixth quarter of science operations. Special emphasis is given to companions between the 2:1 interior and exterior mean-motion resonances. A photometric transit search excludes companions with sizes ranging from roughly 2/3 to 5 times the size of the Earth, depending upon the noise properties of the target star. A search for dynamically induced deviations from a constant period (transit timing variations or TTVs) also shows no significant signals. In contrast, comparison studies of warm Jupiters (with slightly larger orbits) and hot Neptune-size candidates do exhibit signatures of additional companions with these same tests. These differences between hot Jupiters and other planetary systems denote a distinctly different formation or dynamical history.
86 - C. Moutou , G. Hebrard , F.Bouchy 2013
We present high-precision radial-velocity measurements of three solar-type stars: HD 13908, HD 159243, and HIP 91258. The observations were made with the SOPHIE spectrograph at the 1.93-m telescope of Observatoire de Haute-Provence (France). They sho w that these three bright stars host exoplanetary systems composed of at least two companions. HD 13908 b is a planet with a minimum mass of 0.865+-0.035 Mjup, on a circular orbit with a period of 19.382+-0.006 days. There is an outer massive companion in the system with a period of 931+-17 days, e = 0.12+-0.02, and a minimum mass of 5.13+-0.25 Mjup. The star HD 159243, also has two detected companions with respective masses, periods, and eccentricities of Mp = 1.13+-0.05 and 1.9+-0.13 Mjup, $P$ = 12.620+-0.004 and 248.4+-4.9 days, and e = 0.02+-0.02 and 0.075+-0.05. Finally, the star HIP 91258 has a planetary companion with a minimum mass of 1.068+-0.038 Mjup, an orbital period of 5.0505+-0.0015 days, and a quadratic trend indicating an outer planetary or stellar companion that is as yet uncharacterized. The planet-hosting stars HD 13908, HD 159243, and HIP 91258 are main-sequence stars of spectral types F8V, G0V, and G5V, respectively, with moderate activity levels. HIP 91258 is slightly over-metallic, while the two other stars have solar-like metallicity. The three systems are discussed in the frame of formation and dynamical evolution models of systems composed of several giant planets.
The Pan-Planets survey observed an area of 42 sq deg. in the galactic disk for about 165 hours. The main scientific goal of the project is the detection of transiting planets around M dwarfs. We establish an efficient procedure for determining the st ellar parameters $T_{eff}$ and log$g$ of all sources using a method based on SED fitting, utilizing a three-dimensional dust map and proper motion information. In this way we identify more than 60000 M dwarfs, which is by far the largest sample of low-mass stars observed in a transit survey to date. We present several planet candidates around M dwarfs and hotter stars that are currently being followed up. Using Monte-Carlo simulations we calculate the detection efficiency of the Pan-Planets survey for different stellar and planetary populations. We expect to find $3.0^{+3.3}_{-1.6}$ hot Jupiters around F, G, and K dwarfs with periods lower than 10 days based on the planet occurrence rates derived in previous surveys. For M dwarfs, the percentage of stars with a hot Jupiter is under debate. Theoretical models expect a lower occurrence rate than for larger main sequence stars. However, radial velocity surveys find upper limits of about 1% due to their small sample, while the Kepler survey finds a occurrence rate that we estimate to be at least $0.17(^{+0.67}_{-0.04})$%, making it even higher than the determined fraction from OGLE-III for F, G and K stellar types, $0.14(^{+0.15}_{-0.076})%$. With the large sample size of Pan-Planets, we are able to determine an occurrence rate of $0.11(^{+0.37}_{-0.02})$% in case one of our candidates turns out to be a real detection. If, however, none of our candidates turn out to be true planets, we are able to put an upper limit of 0.34% with a 95% confidence on the hot Jupiter occurrence rate of M dwarfs. Therefore we cannot yet confirm the theoretical prediction of a lower occurrence rate for cool stars.
79 - C. A. Watson 2010
Several authors have shown that precise measurements of transit time variations of exoplanets can be sensitive to other planetary bodies, such as exo-moons. In addition, the transit timing variations of the exoplanets closest to their host stars can provide tests of tidal dissipation theory. These studies, however, have not considered the effect of the host star. There is a large body of observational evidence that eclipse times of binary stars can vary dramatically due to variations in the quadrupole moment of the stars driven by stellar activity. In this paper we investigate and estimate the likely impact such variations have on the transit times of exoplanets. We find in several cases that such variations should be detectable. In particular, the estimated period changes for WASP-18b are of the same order as those expected for tidal dissipation, even for relatively low values of the tidal dissipation parameter. The transit time variations caused by the Applegate mechanism are also of the correct magnitude and occur on timescales such that they may be confused with variations caused by light-time travel effects due to the presence of a Jupiter-like second planet. Finally, we suggest that transiting exoplanet systems may provide a clean route (compared to binaries) to constraining the type of dynamo operating in the host star.
85 - J. Goodman 2008
Atmospheric circulation on tidally-locked exoplanets is driven by the absorption and reradiation of heat from the host star. They are natural heat engines, converting heat into mechanical energy. A steady state is possible only if there is a mechanis m to dissipate mechanical energy, or if the redistribution of heat is so effective that the Carnot efficiency is driven to zero. Simulations based on primitive, equivalent-barotropic, or shallow-water equations without explicit provision for dissipation of kinetic energy and for recovery of that energy as heat, violate energy conservation. More seriously perhaps, neglect of physical sources of drag may overestimate wind speeds and rates of advection of heat from the day to the night side.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا