ترغب بنشر مسار تعليمي؟ اضغط هنا

Euler equation of the optimal trajectory for the fastest magnetization reversal of nano-magnetic structures

68   0   0.0 ( 0 )
 نشر من قبل X.R. Wang
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Based on the modified Landau-Lifshitz-Gilbert equation for an arbitrary Stoner particle under an external magnetic field and a spin-polarized electric current, differential equations for the optimal reversal trajectory, along which the magnetization reversal is the fastest one among all possible reversal routes, are obtained. We show that this is a Euler-Lagrange problem with constrains. The Euler equation of the optimal trajectory is useful in designing a magnetic field pulse and/or a polarized electric current pulse in magnetization reversal for two reasons. 1) It is straightforward to obtain the solution of the Euler equation, at least numerically, for a given magnetic nano-structure characterized by its magnetic anisotropy energy. 2) After obtaining the optimal reversal trajectory for a given magnetic nano-structure, finding a proper field/current pulse is an algebraic problem instead of the original nonlinear differential equation.

قيم البحث

اقرأ أيضاً

We demonstrate the magnetization reversal features in NiFe/IrMn/NiFe thin-film structures with 40% and 75% relative content of Ni in Permalloy in the temperature range from 80 K to 300 K. At the descending branches of the hysteresis loops, the magnet ization reversal sequence of the two ferromagnetic layers is found to depend on the type of NiFe alloy. In the samples with 75% relative content of Ni, the bottom ferromagnetic layer reverses prior to the top one. On the contrary, in the samples with 40% of Ni, the top ferromagnetic layer reverses prior to the bottom one. These tendencies of magnetization reversal are preserved in the entire range of temperatures. These distinctions can be explained by the morphological and structural differences of interfaces in the samples based on two types of Permalloy.
The concept of perpendicular shape anisotropy spin-transfer torque magnetic random-access memory (PSA-STT-MRAM) consists in increasing the storage layer thickness to values comparable to the cell diameter, to induce a perpendicular shape anisotropy i n the magnetic storage layer. Making use of that contribution, the downsize scalability of the STT-MRAM may be extended towards sub-20 nm technological nodes, thanks to a reinforcement of the thermal stability factor $Delta$. Although the larger storage layer thickness improves $Delta$, it is expected to negatively impact the writing current and switching time. Hence, optimization of the cell dimensions (diameter, thickness) is of utmost importance for attaining a sufficiently high $Delta$ while keeping a moderate writing current. Micromagnetic simulations were carried out for different pillar thicknesses of fixed lateral size 20 nm. The switching time and the reversal mechanism were analysed as a function of the applied voltage and aspect-ratio (AR) of the storage layer. For AR $<$ 1, the magnetization reversal resembles a macrospin-like mechanism, while for AR $>$ 1 a non-coherent reversal is observed, characterized by the nucleation of a transverse domain wall at the ferromagnet/insulator interface which then propagates along the vertical axis of the pillar. It was further observed that the inverse of the switching time is linearly dependent on the applied voltage. This study was extended to sub-20 nm width with a value of $Delta$ around 80. It was observed that the voltage necessary to reverse the magnetic layer increases as the lateral size is reduced, accompanied with a transition from macrospin-reversal to a buckling-like reversal at high aspect-ratios.
The diversity of various manganese types and its complexes in the Mn-doped ${rm A^{III}B^V}$ semiconductor structures leads to a number of intriguing phenomena. Here we show that the interplay between the ordinary substitutional Mn acceptors and inte rstitial Mn donors as well as donor-acceptor dimers could result in a reversal of electron magnetization. In our all-optical scheme the impurity-to-band excitation via the Mn dimers results in direct orientation of the ionized Mn-donor $d$ shell. A photoexcited electron is then captured by the interstitial Mn and the electron spin becomes parallel to the optically oriented $d$ shell. That produces, in the low excitation regime, the spin-reversal electron magnetization. As the excitation intensity increases the capture by donors is saturated and the polarization of delocalized electrons restores the normal average spin in accordance with the selection rules. A possibility of the experimental observation of the electron spin reversal by means of polarized photoluminescence is discussed.
We report a study of the magnetization reversals and skyrmion configurations in two systems - Pt/Co/MgO and Ir/Fe/Co/Pt multilayers, where magnetic skyrmions are stabilized by a combination of dipolar and Dzyaloshinskii-Moriya interactions (DMI). Fir st Order Reversal Curve (FORC) diagrams of low-DMI Pt/Co/MgO and high-DMI Ir/Fe/Co/Pt exhibit stark differences, which are identified by micromagnetic simulations to be indicative of hybrid and pure Neel skyrmions, respectively. Tracking the evolution of FORC features in multilayers with dipolar interactions and DMI, we find that the negative FORC valley, typically accompanying the positive FORC peak near saturation, disappears under both reduced dipolar interactions and enhanced DMI. As these conditions favor the formation of pure Neel skyrmions, we propose that the resultant FORC feature - a single positive FORC peak near saturation - can act as a fingerprint for pure Neel skyrmions in multilayers. Our study thus expands on the utility of FORC analysis as a tool for characterizing spin topology in multilayer thin films.
The Berry phase picture provides important insights into the electronic properties of condensed matter systems. The intrinsic anomalous Hall (AH) effect can be understood as a consequence of non-zero Berry curvature in momentum space. The realization of the quantum anomalous Hall effect provided conclusive evidence for the intrinsic mechanism of the AH effect in magnetic topological insulators (TIs). Here we fabricated magnetic TI/TI heterostructures and found both the magnitude and sign of the AH effect in the magnetic TI layer can be altered by tuning the TI thickness and/or the electric gate voltage. The sign change of the AH effect with increasing TI thickness is attributed to the charge transfer across the TI and magnetic TI layers, consistent with first-principles calculations. By fabricating the magnetic TI/TI/magnetic TI sandwich heterostructures with different dopants, we created an artificial topological Hall (TH) effect-like feature in Hall traces. This artificial TH effect is induced by the superposition of two AH effects with opposite signs instead of the formation of chiral spin textures in the samples. Our study provides a new route to engineer the Berry curvature in magnetic topological materials that may lead to potential technological applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا