ترغب بنشر مسار تعليمي؟ اضغط هنا

All-optical switching in planar semiconductor microcavities

226   0   0.0 ( 0 )
 نشر من قبل Stefan Schumacher
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using a microscopic many-particle theory, we propose all-optical switching in planar semiconductor microcavities where a weak beam switches a stronger signal. Based on four-wave-mixing instabilities, the general scheme is a semiconductor adaptation of a recently demonstrated switch in an atomic vapor [Dawes et al., Science 308, 672 (2005)].



قيم البحث

اقرأ أيضاً

We experimentally demonstrate a technique for the generation of optical beams carrying orbital angular momentum using a planar semiconductor microcavity. Despite being isotropic systems, the transverse electric - transverse magnetic (TE-TM) polarizat ion splitting featured by semiconductor microcavities allows for the conversion of the circular polarization of an incoming laser beam into the orbital angular momentum of the transmitted light field. The process implies the formation of topological entities, a pair of optical half-vortices, in the intracavity field.
We demonstrate for the first time the strong temporal hysteresis effects in the kinetics of the pumped and scattered polariton populations in a planar semiconductor microcavity under a nano-second-long pulsed resonant (by frequency and angle) excitat ion above the lower polariton branch. The hysteresis effects are explained in the model of multi-mode scattering when the bistability of the nonlinear pumped polariton is accompanied by the explosive growth of the scattered polaritons population. Subsequent self-organization process in the nonlinear polariton system results in a new -- dynamically self-organized -- type of optical parametric oscillator.
The authors report the observation of electroluminescence from GaAs-based semiconductor microcavities in the strong coupling regime. At low current densities the emission consists of two peaks, which exhibit anti-crossing behaviour as a function of d etection angle and thus originate from polariton states. With increasing carrier injection we observe a progressive transition from strong to weak coupling due to screening of the exciton resonance by free carriers. The demonstration that polariton emission can be excited by electrical injection is encouraging for future development of polariton lasers.
Real and momentum space spectrally resolved images of microcavity polariton emission in the regime of condensation are investigated under non resonant excitation using a laser source with reduced intensity fluctuations on the timescale of the exciton lifetime. We observe that the polariton emission consists of many macroscopically occupied modes. Lower energy modes are strongly localized by the photonic potential disorder on a scale of few microns. Higher energy modes have finite k-vectors and are delocalized over 10-15 microns. All the modes exhibit long range spatial coherence comparable to their size. We provide a theoretical model describing the behavior of the system with the results of the simulations in good agreement with the experimental observations. We show that the multimode emission of the polariton condensate is a result of its nonequilibrium character, the interaction with the local photonic potential and the reduced intensity fluctuations of the excitation laser.
We consider exciton-photon coupling in semiconductor microcavities in which separate periodic potentials have been embedded for excitons and photons. We show theoretically that this system supports degenerate ground-states appearing at non-zero in-pl ane momenta, corresponding to multiple valleys in reciprocal space, which are further separated in polarization corresponding to a polarization-valley coupling in the system. Aside forming a basis for valleytronics, the multivalley dispersion is predicted to allow for spontaneous momentum symmetry breaking and two-mode squeezing under non-resonant and resonant excitation, respectively.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا