ترغب بنشر مسار تعليمي؟ اضغط هنا

Structure and Magnetic Fields in the Precessing Jet System SS 433 I. Multi-Frequency Imaging from 1998

30   0   0.0 ( 0 )
 نشر من قبل David Roberts
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف David H. Roberts




اسأل ChatGPT حول البحث

The Very Large Array has been used at five frequencies to study the structure and linear polarization of SS433 on scales as small as ~0.1 ~ 500 AU. Each jet consists of a sharp, curving ridge-line at the leading edge, plus significant trailing off-jet emission, showing that they are enveloped by diffuse relativistic plasma. No kinematic model with constant jet speed fits our images on all scales, but they are consistent with variations in jet speed of around 10% around the optical value. Our images show continuous jets with bright components occurring simultaneously in the two jets roughly every 35 days. When corrected for projection effects and Doppler boosting, the intensities of the two jets are intrinsically very similar. Fractional linear polarization up to 20% is present along the ridge-lines, while the core is essentially unpolarized. The rotation measures are consistent with a foreground screen with RM ~ +110 radians per meter squared, plus a larger, asymmetrical contribution close to the core. The apparent magnetic fields in the jets are roughly aligned with the ridge-lines in most but not all of each jet. The jet is more highly polarized between the components than in the components themselves, suggesting that the mechanism that creates them compresses a tangled part of the magnetic field into a partially-ordered transverse layer. The off-jet emission is remarkably highly polarized, with m ~ 50% in places, suggesting large-scale order of the magnetic field surrounding the jets. This polarized signal may confuse the determination of magnetic field orientations in the jets themselves. However, the images are consistent with a jet magnetic field that is everywhere parallel to the helices.

قيم البحث

اقرأ أيضاً

We fit Chandra HETGS data obtained for the unusual X-ray binary SS 433. While line strengths and continuum levels hardly change, the jet Doppler shifts show aperiodic variations that probably result from shocks in interactions with the local environm ent. The X-ray and optical emission line regions are found to be related but not coincident as the optical line emission persists for days while the X-ray emission lines fade in less than 5000 s. The X-ray spectrum of the blue-shifted jet shows over two dozen emission lines from plasma at a variety of temperatures. The emission measure distribution derived from the spectrum can be used to test jet cooling models.
139 - Pol Bordas 2020
The detection of two sources of gamma rays towards the microquasar SS 433 has been recently reported. The first source can be associated with SS 433s eastern jet lobe, whereas the second source is variable and displays significant periodicity compati ble with the precession period of the binary system, of about 160 days. The location of this variable component is not compatible with the location of SS 433 jets. To explain the observed phenomenology, a scenario based on the illumination of dense gas clouds by relativistic protons accelerated at the interface of the accretion disk envelope has been proposed. Energetic arguments strongly constrain this scenario, however, as it requires an unknown mechanism capable to periodically channel a large fraction of SS 433s kinetic energy towards an emitter located 36 parsec away from the central binary system.
Microquasars occasionally exhibit massive jet ejections which are distinct from the continuous or quasi-continuous weak jet ejections. Because those massive jet ejections are rare and short events, they have hardly been observed in X-ray so far. In t his paper, the first X-ray observation of a massive jet ejection from the microquasar SS 433 with the Rossi X-ray Timing Explorer (RXTE) is reported. SS 433 undergoing a massive ejection event shows a variety of new phenomena including a QPO-like feature near 0.1 Hz, rapid time variability, and shot-like activities. The shot-like activity may be caused by the formation of a small plasma bullet. A massive jet may be consist of thousands of those plasma bullets ejected from the binary system. The size, mass, internal energy, and kinetic energy of the bullets and the massive jet are estimated.
126 - P. Picchi 2020
We present a study of the mass transfer and wind outflows of SS433, focusing on the so-called stationary lines based on archival high and low resolution optical spectra, and new optical multifilter polarimetry and low resolution optical spectra spann ing an interval of a decade and a broad range of precessional and orbital phases. We derive $text{E(B-V)}=0.86pm0.10$ and revised UV and U band polarizations and polarization angles that yield the same position angle as the optical. The polarization wavelength dependence is consistent with optical-dominating electron scattering with a Rayleigh component in U and the UV filters; no polarization changes were observed during a flare event. Using profile orbital and precessional modulation of multiple lines we derive properties for the accretion disk, present evidence for a strong disk wind, determine its velocity structure, and demonstrate its variability on timescales unrelated to the orbit. We derive a mass ratio $q=0.37pm0.04$, and masses $text{M}_X=4.2pm0.4 text{M}_odot$, $text{M}_A=11.3pm 0.6 text{M}_odot$, and show that the A star fills its Roche surface. The O I 7772 r{A} and 8446 r{A} lines show different but related orbital modulation and no evidence for a circumbinary disk component. Instead, the spectral line profile variability can be understood with an ionization stratified outflow predicted by thermal wind modeling, which also accounts for an extended equatorial structure detected at long wavelength.
We study the optical variability of the peculiar Galactic source SS 433 using the observations made with the Russian Turkish 1.5-m telescope (RTT150). A simple technique which allows to obtain high-quality photometric measurements with 0.3-1 s time r esolution using ordinary CCD is described in detail. Using the test observations of nonvariable stars, we show that the atmospheric turbulence introduces no significant distortions into the measured light curves. Therefore, the data obtained in this way are well suited for studying the aperiodic variability of various objects. The large amount of SS 433 optical light curve measurements obtained in this way allowed us to obtain the power spectra of its flux variability with a record sensitivity up to frequencies of ~0.5 Hz and to detect its break at frequency =~2.4e-3 Hz. We suggest that this break in the power spectrum results from the smoothing of the optical flux variability due to a finite size of the emitting region. Based on our measurement of the break frequency in the power spectrum, we estimated the size of the accretion-disk photosphere as 2e12 cm. We show that the amplitude of the variability in SS 433 decreases sharply during accretion-disk eclipses, but it does not disappear completely. This suggests that the size of the variable optical emission source is comparable to that of the normal star whose size is therefore R_O approx 2e12 cm approx 30 R_sun. The decrease in flux variability amplitude during eclipses suggests the presence of a nonvariable optical emission component with a magnitude m_R=~13.2.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا