ترغب بنشر مسار تعليمي؟ اضغط هنا

Modeling the SS 433 Jet Bends

170   0   0.0 ( 0 )
 نشر من قبل Herman L. Marshall
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We fit Chandra HETGS data obtained for the unusual X-ray binary SS 433. While line strengths and continuum levels hardly change, the jet Doppler shifts show aperiodic variations that probably result from shocks in interactions with the local environment. The X-ray and optical emission line regions are found to be related but not coincident as the optical line emission persists for days while the X-ray emission lines fade in less than 5000 s. The X-ray spectrum of the blue-shifted jet shows over two dozen emission lines from plasma at a variety of temperatures. The emission measure distribution derived from the spectrum can be used to test jet cooling models.



قيم البحث

اقرأ أيضاً

We study the optical variability of the peculiar Galactic source SS 433 using the observations made with the Russian Turkish 1.5-m telescope (RTT150). A simple technique which allows to obtain high-quality photometric measurements with 0.3-1 s time r esolution using ordinary CCD is described in detail. Using the test observations of nonvariable stars, we show that the atmospheric turbulence introduces no significant distortions into the measured light curves. Therefore, the data obtained in this way are well suited for studying the aperiodic variability of various objects. The large amount of SS 433 optical light curve measurements obtained in this way allowed us to obtain the power spectra of its flux variability with a record sensitivity up to frequencies of ~0.5 Hz and to detect its break at frequency =~2.4e-3 Hz. We suggest that this break in the power spectrum results from the smoothing of the optical flux variability due to a finite size of the emitting region. Based on our measurement of the break frequency in the power spectrum, we estimated the size of the accretion-disk photosphere as 2e12 cm. We show that the amplitude of the variability in SS 433 decreases sharply during accretion-disk eclipses, but it does not disappear completely. This suggests that the size of the variable optical emission source is comparable to that of the normal star whose size is therefore R_O approx 2e12 cm approx 30 R_sun. The decrease in flux variability amplitude during eclipses suggests the presence of a nonvariable optical emission component with a magnitude m_R=~13.2.
139 - Pol Bordas 2020
The detection of two sources of gamma rays towards the microquasar SS 433 has been recently reported. The first source can be associated with SS 433s eastern jet lobe, whereas the second source is variable and displays significant periodicity compati ble with the precession period of the binary system, of about 160 days. The location of this variable component is not compatible with the location of SS 433 jets. To explain the observed phenomenology, a scenario based on the illumination of dense gas clouds by relativistic protons accelerated at the interface of the accretion disk envelope has been proposed. Energetic arguments strongly constrain this scenario, however, as it requires an unknown mechanism capable to periodically channel a large fraction of SS 433s kinetic energy towards an emitter located 36 parsec away from the central binary system.
Microquasars occasionally exhibit massive jet ejections which are distinct from the continuous or quasi-continuous weak jet ejections. Because those massive jet ejections are rare and short events, they have hardly been observed in X-ray so far. In t his paper, the first X-ray observation of a massive jet ejection from the microquasar SS 433 with the Rossi X-ray Timing Explorer (RXTE) is reported. SS 433 undergoing a massive ejection event shows a variety of new phenomena including a QPO-like feature near 0.1 Hz, rapid time variability, and shot-like activities. The shot-like activity may be caused by the formation of a small plasma bullet. A massive jet may be consist of thousands of those plasma bullets ejected from the binary system. The size, mass, internal energy, and kinetic energy of the bullets and the massive jet are estimated.
Microquasars, the local siblings of extragalactic quasars, are binary systems comprising a compact object and a companion star. By accreting matter from their companions, microquasars launch powerful winds and jets, influencing the interstellar envir onment around them. Steady gamma-ray emission is expected to rise from their central objects, or from interactions between their outflows and the surrounding medium. The latter prediction was recently confirmed with the detection of SS 433 at high (TeV) energies. In this report, we analyze more than ten years of GeV gamma-ray data from the Fermi Gamma-ray Space Telescope on this source. Detailed scrutiny of the data reveal emission in the SS 433 vicinity, co-spatial with a gas enhancement, and hints for emission possibly associated with a terminal lobe of one of the jets. Both gamma-ray excesses are relatively far from the central binary, and the former shows evidence for a periodic variation at the precessional period of SS 433, linking it with the microquasar. This result challenges obvious interpretations and is unexpected from any previously published theoretical models. It provides us with a chance to unveil the particle transport from SS 433 and to probe the structure of the local magnetic field in its vicinity.
92 - P. S. Medvedev 2013
We have detected new components in stationary emission lines of SS 433; these are the superbroad components that are low-contrast substrates with a width of 2000--2500 km s-1 in He I $lambda4922$ and H$beta$ and 4000--5000 km s-1 in He II $lambda4686 $. Based on 44 spectra taken during four years of observations from 2003 to 2007, we have found that these components in the He II and He I lines are eclipsed by the donor star; their behavior with precessional and orbital phases is regular and similar to the behavior of the optical brightness of SS 433. The same component in H$beta$ shows neither eclipses nor precessional variability. We conclude that the superbroad components in the helium and hydrogen lines are different in origin. Electron scattering is shown to reproduce well the superbroad component of H$beta$ at a gas temperature of 20--35 kK and an optical depth for Thomson scattering $tau approx$ 0.25--0.35. The superbroad components of the helium lines are probably formed in the wind from the supercritical accretion disk. We have computed a wind model based on the concept of Shakura-Sunyaev supercritical disk accretion. The main patterns of the He II line profiles are well reproduced in this model: not only the appearance of the superbroad component but also the evolution of the central two-component part of the profile of this line during its eclipse by the donor star can be explained.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا