ﻻ يوجد ملخص باللغة العربية
We compute the imprints left on the CMB by two cosmic reionization models consistent with current observations but characterized by alternative radiative feedback prescriptions (suppression and filtering) resulting in a different suppression of star formation in low-mass halos. The models imply different ionization and thermal histories and 21 cm background signals. The derived Comptonization, u, and free-free distortion, y_B, parameters are below current observational limits for both models. However, the value of u = 1.69 * 10^-7 (9.65 * 10^-8) for the suppression (filtering) model is in the detectability range of the next generation of CMB spectrum experiments. Through the dedicated Boltzmann code CMBFAST, modified to include the above ionization histories, we compute the CMB angular power spectrum (APS) of the TT, TE, and EE modes. For the EE mode the differences between these models are significantly larger than the cosmic and sampling variance over the multipole range l = 5-15, leaving a good chance of discriminating between these feedback mechanisms with forthcoming/future CMB polarization experiments. The main limitations come from foreground contamination: it should be subtracted at per cent level in terms of APS, a result potentially achievable by novel component separation techniques and mapping of Galactic foreground.
We show that a non-minimal coupling of electromagnetism with background torsion can produce birefringence of the electromagnetic waves. This birefringence gives rise to a B-mode polarization of the CMB. From the bounds on B-mode from WMAP and BOOMERa
Cosmic microwave background polarization encodes information not only on the early universe but also dark energy, neutrino mass, and gravity in the late universe through CMB lensing. Ground based surveys such as ACTpol, PolarBear, SPTpol significantl
We investigate the primordial phase of the Universe in the context of brane inflation modeled by Bogomolnyi-Prasad-Sommerfield (BPS) domain walls solutions of a bosonic sector of a 5D supergravity inspired theory. The solutions are embedded into five
We constrain parity-violating interactions to the surface of last scattering using spectra from the QUaD experiments second and third seasons of observations by searching for a possible systematic rotation of the polarization directions of CMB photon
Most cosmic microwave background experiments observe the sky along circular or near-circular scans on the celestial sphere. For such experiments, we show that simple linear systems connect the Fourier spectra of temperature and polarization time-orde