ﻻ يوجد ملخص باللغة العربية
We constrain parity-violating interactions to the surface of last scattering using spectra from the QUaD experiments second and third seasons of observations by searching for a possible systematic rotation of the polarization directions of CMB photons. We measure the rotation angle due to such a possible cosmological birefringence to be 0.55 deg. +/- 0.82 deg. (random) +/- 0.5 deg. (systematic) using QUaDs 100 and 150 GHz TB and EB spectra over the multipole range 200 < l < 2000, consistent with null, and constrain Lorentz violating interactions to < 2^-43 GeV (68% confidence limit). This is the best constraint to date on electrodynamic parity violation on cosmological scales.
QUaD is a bolometric CMB polarimeter sited at the South Pole, operating at frequencies of 100 and 150 GHz. In this paper we report preliminary results from the first season of operation (austral winter 2005). All six CMB power spectra are presented d
We report results from the second and third seasons of observation with the QUaD experiment. Angular power spectra of the Cosmic Microwave Background are derived for both temperature and polarization at both 100 GHz and 150 GHz, and as cross frequenc
In this paper we present a parameter estimation analysis of the polarization and temperature power spectra from the second and third season of observations with the QUaD experiment. QUaD has for the first time detected multiple acoustic peaks in the
Parity violating extensions of the standard electromagnetic theory cause in vacuo rotation of the plane of polarization of propagating photons. This effect, also known as cosmic birefringence, impacts the cosmic microwave background (CMB) anisotropy
Correlations of polarization components in the coordinate frame are a natural basis for searches of parity-violating modes in the Cosmic Microwave Background (CMB). This fact can be exploited to build estimators of parity-violating modes that are {sl