ترغب بنشر مسار تعليمي؟ اضغط هنا

Modelling the Pan-Spectral Energy Distribution of Starburst Galaxies: IV The Controlling Parameters of the Starburst SED

535   0   0.0 ( 0 )
 نشر من قبل Brent Groves
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف B. Groves




اسأل ChatGPT حول البحث

We combine the the stellar spectral synthesis code Starburst99, the nebular modelling code MAPPINGSIII, and a 1-D dynamical evolution model of HII regions around massive clusters of young stars to generate improved models of the spectral energy distribution (SED) of starburst galaxies. We introduce a compactness parameter, C, which characterizes the specific intensity of the radiation field at ionization fronts in HII regions, and which controls the shape of the far-IR dust re-emission, often referred to loosely as the dust ``temperature. We also investigate the effect of metallicity on the overall SED and in particular, on the strength of the PAH features. We provide templates for the mean emission produced by the young compact HII regions, the older (10 - 100 Myr) stars and for the wavelength-dependent attenuation produced by a foreground screen of the dust used in our model. We demonstrate that these components may be combined to produce a excellent fit to the observed SEDs of star formation dominated galaxies which are often used as templates (Arp 220 and NGC 6240). This fit extends from the Lyman Limit to wavelengths of about one mm. The methods presented in both this paper and in the previous papers of this series allow the extraction of the physical parameters of the starburst region (star formation rates, star formation rate history, mean cluster mass, metallicity, dust attenuation and pressure) from the analysis of the pan-spectral SED.



قيم البحث

اقرأ أيضاً

70 - T J Galvin , N Seymour , J Marvil 2017
We have acquired radio continuum data between 70,MHz and 48,GHz for a sample of 19 southern starburst galaxies at moderate redshifts ($0.067 < z < 0.227$) with the aim of separating synchrotron and free-free emission components. Using a Bayesian fram ework we find the radio continuum is rarely characterised well by a single power law, instead often exhibiting low frequency turnovers below 500,MHz, steepening at mid-to-high frequencies, and a flattening at high frequencies where free-free emission begins to dominate over the synchrotron emission. These higher order curvature components may be attributed to free-free absorption across multiple regions of star formation with varying optical depths. The decomposed synchrotron and free-free emission components in our sample of galaxies form strong correlations with the total-infrared bolometric luminosities. Finally, we find that without accounting for free-free absorption with turnovers between 90 to 500,MHz the radio-continuum at low frequency ($ u < 200$,MHz) could be overestimated by upwards of a factor of twelve if a simple power law extrapolation is used from higher frequencies. The mean synchrotron spectral index of our sample is constrained to be $alpha=-1.06$, which is steeper then the canonical value of $-0.8$ for normal galaxies. We suggest this may be caused by an intrinsically steeper cosmic ray distribution.
80 - Michael Dopita 2004
In this paper, we combine the stellar spectral synthesis code STARBURST 99, the nebular modelling code MAPPINGS IIIq, a 1-D dynamical evolution model of HII regions around massive clusters of young stars and a simplified model of synchrotron emissivi ty to produce purely theoretical self-consistent synthetic spectral energy distributions (SEDs) for (solar metallicity) starbursts lasting some $10^8$ years. These SEDs extend from the Lyman Limit to beyond 21 cm. We find that two ISM parameters control the form of the SED; the pressure in the diffuse phase of the ISM (or, equivalently, its density), and the molecular cloud dissipation timescale. We present detailed SED fits to Arp 220 and NGC 6240, and we give the predicted colors for starburst galaxies derived from our models for the IRAS and the Spitzer Space Observatory MIPS and IRAC instruments. Our models reproduce the spread in observed colors of starburst galaxies. Finally, we present absolute calibrations to convert observed fluxes into star formation rates in the UV (GALEX), at optical wavelengths (H$alpha$), and in the IR (IRAS or the Spitzer Space Observatory). (Abstract Truncated)
248 - L. Silva 2010
The spectral energy distribution of galaxies is a complex function of the star formation history and geometrical arrangement of stars and gas in galaxies. The computation of the radiative transfer of stellar radiation through the dust distribution is time-consuming. This aspect becomes unacceptable in particular when dealing with the predictions by semi-analytical galaxy formation models populating cosmological volumes, to be then compared with multi-wavelength surveys. Mainly for this aim, we have implemented an artificial neural network algorithm into the spectro-photometric and radiative transfer code GRASIL in order to compute the spectral energy distribution of galaxies in a short computing time. This allows to avoid the adoption of empirical templates that may have nothing to do with the mock galaxies output by models. The ANN has been implemented to compute the dust emission spectrum (the bottleneck of the computation), and separately for the star-forming molecular clouds and the diffuse dust (due to their different properties and dependencies). We have defined the input neurons effectively determining their emission, which means this implementation has a general applicability and is not linked to a particular galaxy formation model. We have trained the net for the disc and spherical geometries, and tested its performance to reproduce the SED of disc and starburst galaxies, as well as for a semi-analytical model for spheroidal galaxies. We have checked that for this model both the SEDs and the galaxy counts in the Herschel bands obtained with the ANN approximation are almost superimposed to the same quantities obtained with the full GRASIL. We conclude that this method appears robust and advantageous, and will present the application to a more complex SAM in another paper.
87 - R. Coziol 1998
(Abridged) We discuss the nature of the galaxies found in the Pico dos Dias Survey (PDS) for young stellar objects. The PDS galaxies were selected from the IRAS Point Source catalog. They have flux density of moderate or high quality at 12, 25 and 60 $mu$m and spectral indices in the ranges $-3.00 leq alpha(25,12) leq +0.35$ and $-2.50 leq alpha(60,25) leq +0.85$. These criteria allowed the detection of 382 galaxies, which are a mixture of starburst and Seyfert galaxies. The starburst galaxies show an excess of FIR luminosity and their IRAS colors are significantly different from those of Seyfert galaxies -- 99% of the starburst galaxies in our sample have a spectral index $alpha(60,25) < -1.9$. As opposed to Seyfert galaxies, very few PDS starbursts are detected in X-rays. In the infrared, the starburst galaxies form a continuous sequence with normal galaxies. But they generally can be distinguished from normal galaxies by their spectral index $alpha(60,25) > -2.5$. This color cut--off also marks a change in the dominant morphologies of the galaxies: the normal IRAS galaxies are preferentially late--type spirals (Sb and later), while the starbursts are more numerous among early--type spirals (earlier than Sbc). No difference is found between the starbursts detected in the FIR and those detected on the basis of UV excess. The PDS starburst galaxies represent the FIR luminous branch of the UV-bright starburst nucleus galaxies, with mean FIR luminosity $log({rm L}_{rm IR}/{rm L}_odot) = 10.3 pm 0.5$ and redshifts smaller than 0.1. They form a complete sample limited in flux in the FIR at $2times10^{-10}$ erg cm$^{-2}$ s$^{-1}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا