ترغب بنشر مسار تعليمي؟ اضغط هنا

The Spectral Energy Distribution of Post-Starburst Galaxies in the NEWFIRM Medium-Band Survey: A Low Contribution from TP-AGB Stars

268   0   0.0 ( 0 )
 نشر من قبل Mariska Kriek
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

No English abstract



قيم البحث

اقرأ أيضاً

Deep near-infrared imaging surveys allow us to select and study distant galaxies in the rest-frame optical, and have transformed our understanding of the early Universe. As the vast majority of K- or IRAC-selected galaxies is too faint for spectrosco py, the interpretation of these surveys relies almost exclusively on photometric redshifts determined from fitting templates to the broad-band photometry. The best-achieved accuracy of these redshifts Delta(z)/(1+z) ~ 0.06 at z>1.5, which is sufficient for determining the broad characteristics of the galaxy population but not for measuring accurate rest-frame colors, stellar population parameters, or the local galaxy density. We have started a near-infrared imaging survey with the NEWFIRM camera on the Kitt Peak 4m telescope to greatly improve the accuracy of photometric redshifts in the range 1.5<z<3.5. The survey uses five medium-bandwidth filters, which provide crude spectra over the wavelength range 1-1.8 micron for all objects in the 27.6 x 27.6 arcmin NEWFIRM field. In this first paper, we illustrate the technique by showing medium band NEWFIRM photometry of several galaxies at 1.7<z<2.7 from the near-infrared spectroscopic sample of Kriek et al. (2008). The filters unambiguously pinpoint the location of the redshifted Balmer break in these galaxies, enabling very accurate redshift measurements. The full survey will provide similar data for ~8000 faint K-selected galaxies at z>1.5 in the COSMOS and AEGIS fields. The filter set also enables efficient selection of exotic objects such as high redshift quasars, galaxies dominated by emission lines, and very cool brown dwarfs; we show that late T and candidate Y dwarfs could be identified using only two of the filters.
The identities of the main processes triggering and quenching star-formation in galaxies remain unclear. A key stage in evolution, however, appears to be represented by post-starburst galaxies. To investigate their impact on galaxy evolution, we init iated a multiwavelength study of galaxies with k+a spectral features in the COSMOS field. We examine a mass-selected sample of k+a galaxies at z=0.48-1.2 using the spectroscopic zCOSMOS sample. K+a galaxies occupy the brightest tail of the luminosity distribution. They are as massive as quiescent galaxies and populate the green valley in the colour versus luminosity (or stellar mass) distribution. A small percentage (<8%) of these galaxies have radio and/or X-ray counterparts (implying an upper limit to the SFR of ~8Msun/yr). Over the entire redshift range explored, the class of k+a galaxies is morphologically a heterogeneous population with a similar incidence of bulge-dominated and disky galaxies. This distribution does not vary with the strength of the Hdelta absorption line but instead with stellar mass in a way reminiscent of the well-known mass-morphology relation. Although k+a galaxies are also found in underdense regions, they appear to reside typically in a similarly rich environment as quiescent galaxies on a physical scale of ~2-8Mpc, and in groups they show a morphological early-to-late type ratio similar to the quiescent galaxy class. With the current data set, we do not find evidence of statistical significant evolution in either the number/mass density of k+a galaxies at intermediate redshift with respect to the local values, or the spectral properties. Those galaxies, which are affected by a sudden quenching of their star-formation activity, may increase the stellar mass of the red-sequence by up to a non-negligible level of ~10%.
155 - Stefano Zibetti 2012
We present new spectro-photometric NIR observations of 16 post-starburst galaxies especially designed to test for the presence of strong carbon features of thermally pulsing AGB (TP-AGB) stars, as predicted by recent models of stellar population synt hesis. Selection based on clear spectroscopic optical features indicating the strong predominance of stellar populations with ages between 0.5 and 1.5 Gyr and redshift around 0.2 allows us to probe the spectral region that is most affected by the carbon features of TP-AGB stars (unaccessible from the ground for z~0 galaxies) in the evolutionary phase when their impact on the IR luminosity is maximum. Nevertheless, none of the observed galaxies display such features. Moreover the NIR fluxes relative to optical are consistent with those predicted by the original Bruzual & Charlot (2003) models, where the impact of TP-AGB stars is much lower than has been recently advocated.
We derive dust masses ($M_{rm dust}$) from the spectral energy distributions of 58 post-starburst galaxies (PSBs). There is an anticorrelation between specific dust mass ($M_{rm dust}$/$M_{star}$) and the time elapsed since the starburst ended, indic ating that dust was either destroyed, expelled, or rendered undetectable over the $sim$1 Gyr after the burst. The $M_{rm dust}$/$M_{star}$ depletion timescale, 205$^{+58}_{-37}$ Myr, is consistent with that of the CO-traced $M_{rm H_2}/M_{star}$, suggesting that dust and gas are altered via the same process. Extrapolating these trends leads to the $M_{rm dust}/M_{star}$ and $M_{rm H_2}/M_{star}$ values of early-type galaxies (ETGs) within 1-2 Gyr, a timescale consistent with the evolution of other PSB properties into ETGs. Comparing $M_{rm dust}$ and $M_{rm H_2}$ for PSBs yields a calibration, log $M_{rm H_2}$ = 0.45 log $M_{rm dust}$ + 6.02, that allows us to place 33 PSBs on the Kennicutt-Schmidt (KS) plane, $Sigma rm SFR-Sigma M_{rm H_2}$. Over the first $sim$200-300 Myr, the PSBs evolve down and off of the KS relation, as their star formation rate (SFR) decreases more rapidly than $M_{rm H_2}$. Afterwards, $M_{rm H_2}$ continues to decline whereas the SFR levels off. These trends suggest that the star-formation efficiency bottoms out at 10$^{-11} rm yr^{-1}$ and will rise to ETG levels within 0.5-1.1 Gyr afterwards. The SFR decline after the burst is likely due to the absence of gas denser than the CO-traced H$_2$. The mechanism of the $M_{rm dust}/M_{star}$ and$M_{rm H_2}/M_{star}$ decline, whose timescale suggests active galactic nucleus (AGN) or low-ionization nuclear emission-line region (LINER) feedback, may also be preventing the large CO-traced molecular gas reservoirs from collapsing and forming denser star forming clouds.
Obscured by their circumstellar dusty envelopes post-AGB stars emit a large fraction of their energy in the infrared and thus, infrared sky surveys like IRAS were essential for discoveries of post-AGBs in the past. Now, with the AKARI infrared sky su rvey we can extend our knowledge about the late stages of stellar evolution. The long-term goal of our work is to define new photometric criteria to distinguish new post-AGB candidates from the AKARI data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا