ﻻ يوجد ملخص باللغة العربية
After our recent discovery of four magnetic Herbig stars, we have decided to study in detail one of them, HD 200775, to determine if its magnetic topology is similar to that of the main sequence magnetic stars. With this aim, we monitored this star in Stokes I and V over more than two years, using the new spectropolarimeters ESPaDOnS at CFHT, and Narval at TBL. Using our data, we find that HD 200775 is a double-lined spectroscopic binary system, whose secondary seems similar, in temperature, to the primary. We determine the luminosity ratio of the system, and using the luminosity of the system found in literature, we derive the luminosity of both stars. From our measurements of the radial velocities of both stars we determine the ephemeris and the orbital parameters of the system. We have fitted 30 Stokes V profiles simultaneously, using a chi2 minimisation method, with a decentered-dipole model. The best-fit model provides a rotation period of 4.3281 d an inclination angle of 60 degrees, and a magnetic obliquity angle of 125 degrees. The polar strength of the magnetic dipole field is 1000 G, which is decentered by 0.05 R* from the center of the star. The derived magnetic field model is qualitatively identical to those commonly observed in the Ap/Bp stars, which bring strong argument in favour of the fossil field hypothesis, to explain the origin of the magnetic fields in the main sequence Ap/Bp stars. Our determination of the inclination of the rotation axis leads to a radius of the primary which is smaller than that derived from the HR diagram position. This can be explained by a larger intrinsic luminosity of the secondary relative to the primary, due to a larger circumstellar extinction of the secondary relative to the primary.
The region surrounding the well-known reflection nebula, NGC 7023, illuminated by a Herbig Be star, HD 200775, located in the dark cloud L1174 is studied in this work. Based on the distances and proper motion values from Gaia DR2 of 20 previously kno
Despite of the importance of magnetic fields for the full understanding of the properties of accreting Herbig Ae/Be stars, these fields have scarcely been studied over the rotation cycle until now. One reason for the paucity of such observations is t
Studying the physical conditions in circumstellar disks is a crucial step toward understanding planet formation. Of particular interest is the case of HD 100546, a Herbig Be star that presents a gap within the first 13 AU of its protoplanetary disk,
Our recent discoveries of magnetic fields in a small number of Herbig Ae/Be (HAeBe) stars, the evolutionary progenitors of main sequence A/B stars, raise new questions about the origin of magnetic fields in the intermediate mass stars. The favoured f
The disk atmosphere is one of the fundamental elements of theoretical models of a protoplanetary disk. However, the direct observation of the warm gas (>> 100 K) at large radius of a disk (>> 10 AU) is challenging, because the line emission from warm