ترغب بنشر مسار تعليمي؟ اضغط هنا

Modelling the spectral energy distribution of ULIRGs II: The energetic environment and the dense interstellar medium

154   0   0.0 ( 0 )
 نشر من قبل Olga Vega Dr
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English
 تأليف O. Vega




اسأل ChatGPT حول البحث

We fit the near-infrared to radio spectral energy distributions of 30 luminous and ultra-luminous infrared galaxies with pure starburst models or models that include both starburst and AGN components to determine important physical parameters for this population of objects. In particular we constrain the optical depth towards the luminosity source, the star formation rate, the star formation efficiency and the AGN fraction. We find that although about half of our sample have best-fit models that include an AGN component, only 30% have an AGN which accounts for more than 10% of the infrared luminosity, whereas all have an energetically dominant starburst. Our derived AGN fractions are generally in good agreement other measurements based in the mid-infrared line ratios measured by Spitzer IRS, but lower than those derived from PAH equivalent widths or the mid-infrared spectral slope. Our models determine the mass of dense molecular gas via the extinction required to reproduce the SED. Assuming that this mass is that traced by HCN, we reproduce the observed linear relation between HCN and infrared luminosities found by Gao & Solomon. We also find that the star formation efficiency, defined as the current star formation rate per unit of dense molecular gas mass, is enhanced in the ULIRGs phase. If the evolution of ULIRGs includes a phase in which an AGN contributes an important fraction to the infrared luminosity, this phase should last an order of magnitude less time than the starburst phase. Because the mass of dense molecular gas which we derive is consistent with observations of the HCN molecule,it should be possible to estimate the mass of dense, star-forming molecular gas in such objects when molecular line data are not available.



قيم البحث

اقرأ أيضاً

185 - O. Vega , A. Bressan (1 2009
We fit the near-infrared to radio spectral energy distributions of a sample of 30 luminous and ultra-luminous infrared galaxies with models that include both starburst and AGN components. The aim of the work was to determine important physical parame ters for this kind of objects such as the optical depth towards the luminosity source, the star formation rate, the star formation efficiency and the AGN fraction. We found that although about half of our sample have best-fit models that include an AGN component, only 30 % have an AGN which accounts for more than 10 % of the infrared luminosity whereas all have an energetically dominant starburst. Our models also determine the mass of dense molecular gas. Assuming that this mass is that traced by the HCN molecule, we reproduce the observed linear relation between HCN luminosity and infrared luminosity found by Gao and Solomon (2004). However, our derived conversion factor between HCN luminosity and the mass of dense molecular gas is a factor of 2 smaller than that assumed by these authors. Finally, we find that the star formation efficiency falls as the starburst ages.
As a constraint for new starburst/AGN models of IRAS bright galaxies we determine the radio spectra of 31 luminous and ultraluminous IRAS galaxies (LIRGs/ULIRGs). We construct the radio spectra using both new and archival data. From our sample of rad io spectra we find that very few have a straight power-law slope. Although some sources show a flattening of the radio spectral slope at high frequencies the average spectrum shows a steepening of the radio spectrum from 1.4 to 22.5 GHz. This is unexpected because in sources with high rates of star formation we expect flat spectrum, free-free emission to make a significant contribution to the radio flux at higher radio frequencies. Despite this trend the radio spectral indices between 8.4 and 22.5 GHz are flatter for sources with higher values of the FIR-radio flux density ratio q, when this is calculated at 8.4 GHz. Therefore, sources that are deficient in radio emission relative to FIR emission (presumably younger sources) have a larger thermal component to their radio emission. However, we find no correlation between the radio spectral index between 1.4 and 4.8 GHz and q at 8.4 GHz. Because the low frequency spectral index is affected by free-free absorption, and this is a function of source size for a given mass of ionized gas, this is evidence that the ionized gas in ULIRGs shows a range of densities. The youngest LIRGs and ULIRGs are characterized by a larger contribution to their high-frequency radio spectra from free-free emission. However, the youngest sources are not those that have the greatest free-free absorption at low radio frequencies. The sources in which the effects of free-free absorption are strongest are instead the most compact sources. Although these have the warmest FIR colours, they are not necessarily the youngest sources.
350 - Aya Kubota 2019
We develop a broadband spectral model, agnsli}, to describe super-Eddington black hole accretion disc spectra. This is based on the slim disc emissivity, where radial advection keeps the surface luminosity at the local Eddington limit, resulting in L (r)~ r^{-2} rather than the r^{-3} expected from the Novikov-Thorne (standard, sub-Eddington) disc emissivity. Wind losses should also be important but these are expected to produce a similar radiative emissivity. We assume that the flow is radially stratified, with an outer standard disc, an inner hot Comptonising region and an intermediate warm Comptonising region to produce the soft X-ray excess. This gives the model enough flexibility to fit the observed data, but with the additional requirement of energy conservation to give physical constraints. We use this to fit the broadband spectrum of one of the most extreme Active Galactic Nuclei, the Narrow Line Seyfert 1 RX J0439.6-5311, which has a black hole mass of (6~9) times 10^6 solar mass as derived from the H_beta line width. This cannot be fit with the standard disc emissivity at this mass, as even zero spin models overproduce the observed luminosity. Instead, we show that the spectrum is well reproduced by the slim disc model, giving mass accretion rates around (5~10) times Eddington limit. There is no constraint on black hole spin as the efficiency is reduced by advection. Such extreme accretion rates should be characteristic of the first Quasars, and we demonstrate this by fitting to the spectrum of a recently discovered super-Eddington Quasar, PSO J006+39, at z=6.6.
Maps of Galactic polarized continuum emission at 1408, 1660, and 1713 MHz towards the local Taurus molecular cloud complex were made with the Effelsberg 100-m telescope. Minima in the polarized emission which are located at the boundary of a molecula r cloud were detected. Beside high rotation measures and unusual spectral indices of the polarized intensity, these features are associated with the molecular gas. At the higher frequencies the minima get less distinct. We have modelled the multi-frequency observations by placing magneto-ionic Faraday screens at the distance of the molecular cloud. In this model Faraday rotated background emission adds to foreground emission towards these screens. The systematic variation of the observed properties is the result of different line-of-sight lengths through the screen assuming spherical symmetry. For a distance of 140 pc to the Taurus clouds the physical sizes of the Faraday screens are of the order of 2 pc. In this paper we describe the data calibration and modelling process for one such object. We find an intrinsic rotation measure of about -29 rad/m^{2} to model the observations. It is pointed out that the observed rotation measure differs from the physical. Further observational constraints from H-alpha observations limit the thermal electron density to less than 0.8 cm^{-3}, and we conclude that the regular magnetic field strength parallel to the line-of-sight exceeds 20 micro Gauss to account for the intrinsic rotation measure.
216 - L. Silva 2010
The spectral energy distribution of galaxies is a complex function of the star formation history and geometrical arrangement of stars and gas in galaxies. The computation of the radiative transfer of stellar radiation through the dust distribution is time-consuming. This aspect becomes unacceptable in particular when dealing with the predictions by semi-analytical galaxy formation models populating cosmological volumes, to be then compared with multi-wavelength surveys. Mainly for this aim, we have implemented an artificial neural network algorithm into the spectro-photometric and radiative transfer code GRASIL in order to compute the spectral energy distribution of galaxies in a short computing time. This allows to avoid the adoption of empirical templates that may have nothing to do with the mock galaxies output by models. The ANN has been implemented to compute the dust emission spectrum (the bottleneck of the computation), and separately for the star-forming molecular clouds and the diffuse dust (due to their different properties and dependencies). We have defined the input neurons effectively determining their emission, which means this implementation has a general applicability and is not linked to a particular galaxy formation model. We have trained the net for the disc and spherical geometries, and tested its performance to reproduce the SED of disc and starburst galaxies, as well as for a semi-analytical model for spheroidal galaxies. We have checked that for this model both the SEDs and the galaxy counts in the Herschel bands obtained with the ANN approximation are almost superimposed to the same quantities obtained with the full GRASIL. We conclude that this method appears robust and advantageous, and will present the application to a more complex SAM in another paper.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا