ﻻ يوجد ملخص باللغة العربية
In this note, we discuss implications of the results obtained in [MTV4]. It was shown there that eigenvectors of the Bethe algebra of the quantum gl_N Gaudin model are in a one-to-one correspondence with Fuchsian differential operators with polynomial kernel. Here, we interpret this fact as a separation of variables in the gl_N Gaudin model. Having a Fuchsian differential operator with polynomial kernel, we construct the corresponding eigenvector of the Bethe algebra. It was shown in [MTV4] that the Bethe algebra has simple spectrum if the evaluation parameters of the Gaudin model are generic. In that case, our Bethe ansatz construction produces an eigenbasis of the Bethe algebra.
A new form of Bethe ansatz equations is introduced. A version of a separation of variables for the quantum $sl_3$ Gaudin model is presented.
We establish the method of Bethe ansatz for the XXZ type model obtained from the R-matrix associated to quantum toroidal gl(1). We do that by using shuffle realizations of the modules and by showing that the Hamiltonian of the model is obtained from
We study highest weight representations of the Borel subalgebra of the quantum toroidal gl(1) algebra with finite-dimensional weight spaces. In particular, we develop the q-character theory for such modules. We introduce and study the subcategory of
In this work, we generalize the numerical approach to Gaudin models developed earlier by us to degenerate systems showing that their treatment is surprisingly convenient from a numerical point of view. In fact, high degeneracies not only reduce the n
We derive a number of results related to the Gaudin model associated to the simple Lie algebra of type G$_2$. We compute explicit formulas for solutions of the Bethe ansatz equations associated to the tensor product of an arbitrary finite-dimension