ترغب بنشر مسار تعليمي؟ اضغط هنا

On separation of variables and completeness of the Bethe ansatz for quantum gl_N Gaudin model

105   0   0.0 ( 0 )
 نشر من قبل Svetlana Varchenko
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this note, we discuss implications of the results obtained in [MTV4]. It was shown there that eigenvectors of the Bethe algebra of the quantum gl_N Gaudin model are in a one-to-one correspondence with Fuchsian differential operators with polynomial kernel. Here, we interpret this fact as a separation of variables in the gl_N Gaudin model. Having a Fuchsian differential operator with polynomial kernel, we construct the corresponding eigenvector of the Bethe algebra. It was shown in [MTV4] that the Bethe algebra has simple spectrum if the evaluation parameters of the Gaudin model are generic. In that case, our Bethe ansatz construction produces an eigenbasis of the Bethe algebra.



قيم البحث

اقرأ أيضاً

A new form of Bethe ansatz equations is introduced. A version of a separation of variables for the quantum $sl_3$ Gaudin model is presented.
152 - B. Feigin , M. Jimbo , T. Miwa 2015
We establish the method of Bethe ansatz for the XXZ type model obtained from the R-matrix associated to quantum toroidal gl(1). We do that by using shuffle realizations of the modules and by showing that the Hamiltonian of the model is obtained from a simple multiplication operator by taking an appropriate quotient. We expect this approach to be applicable to a wide variety of models.
171 - B. Feigin , M. Jimbo , T. Miwa 2016
We study highest weight representations of the Borel subalgebra of the quantum toroidal gl(1) algebra with finite-dimensional weight spaces. In particular, we develop the q-character theory for such modules. We introduce and study the subcategory of `finite type modules. By definition, a module over the Borel subalgebra is finite type if the Cartan like current psi^+(z) has a finite number of eigenvalues, even though the module itself can be infinite dimensional. We use our results to diagonalize the transfer matrix T_{V,W}(u;p) analogous to those of the six vertex model. In our setting T_{V,W}(u;p) acts in a tensor product W of Fock spaces and V is a highest weight module over the Borel subalgebra of quantum toroidal gl(1) with finite-dimensional weight spaces. Namely we show that for a special choice of finite type modules $V$ the corresponding transfer matrices, Q(u;p) and T(u;p), are polynomials in u and satisfy a two-term TQ relation. We use this relation to prove the Bethe Ansatz equation for the zeroes of the eigenvalues of Q(u;p). Then we show that the eigenvalues of T_{V,W}(u;p) are given by an appropriate substitution of eigenvalues of Q(u;p) into the q-character of V.
In this work, we generalize the numerical approach to Gaudin models developed earlier by us to degenerate systems showing that their treatment is surprisingly convenient from a numerical point of view. In fact, high degeneracies not only reduce the n umber of relevant states in the Hilbert space by a non negligible fraction, they also allow to write the relevant equations in the form of sparse matrix equations. Moreover, we introduce a new inversion method based on a basis of barycentric polynomials which leads to a more stable and efficient root extraction which most importantly avoids the necessity of working with arbitrary precision. As an example we show the results of our procedure applied to the Richardson model on a square lattice.
200 - Kang Lu , E. Mukhin 2017
We derive a number of results related to the Gaudin model associated to the simple Lie algebra of type G$_2$. We compute explicit formulas for solutions of the Bethe ansatz equations associated to the tensor product of an arbitrary finite-dimension al irreducible module and the vector representation. We use this result to show that the Bethe ansatz is complete in any tensor product where all but one factor are vector representations and the evaluation parameters are generic. We show that the points of the spectrum of the Gaudin model in type G$_2$ are in a bijective correspondence with self-self-dual spaces of polynomials. We study the set of all self-self-dual spaces - the self-self-dual Grassmannian. We establish a stratification of the self-self-dual Grassmannian with the strata labeled by unordered sets of dominant integral weights and unordered sets of nonnegative integers, satisfying certain explicit conditions. We describe closures of the strata in terms of representation theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا