We establish the method of Bethe ansatz for the XXZ type model obtained from the R-matrix associated to quantum toroidal gl(1). We do that by using shuffle realizations of the modules and by showing that the Hamiltonian of the model is obtained from a simple multiplication operator by taking an appropriate quotient. We expect this approach to be applicable to a wide variety of models.
We study highest weight representations of the Borel subalgebra of the quantum toroidal gl(1) algebra with finite-dimensional weight spaces. In particular, we develop the q-character theory for such modules. We introduce and study the subcategory of
`finite type modules. By definition, a module over the Borel subalgebra is finite type if the Cartan like current psi^+(z) has a finite number of eigenvalues, even though the module itself can be infinite dimensional. We use our results to diagonalize the transfer matrix T_{V,W}(u;p) analogous to those of the six vertex model. In our setting T_{V,W}(u;p) acts in a tensor product W of Fock spaces and V is a highest weight module over the Borel subalgebra of quantum toroidal gl(1) with finite-dimensional weight spaces. Namely we show that for a special choice of finite type modules $V$ the corresponding transfer matrices, Q(u;p) and T(u;p), are polynomials in u and satisfy a two-term TQ relation. We use this relation to prove the Bethe Ansatz equation for the zeroes of the eigenvalues of Q(u;p). Then we show that the eigenvalues of T_{V,W}(u;p) are given by an appropriate substitution of eigenvalues of Q(u;p) into the q-character of V.
We study solutions of the Bethe ansatz equations of the non-homogeneous periodic XXX model associated to super Yangian $mathrm Y(mathfrak{gl}_{m|n})$. To a solution we associate a rational difference operator $mathcal D$ and a superspace of rational
functions $W$. We show that the set of complete factorizations of $mathcal D$ is in canonical bijection with the variety of superflags in $W$ and that each generic superflag defines a solution of the Bethe ansatz equation. We also give the analogous statements for the quasi-periodic supersymmetric spin chains.
We construct an analog of the subalgebra $Ugl(n)otimes Ugl(m)$ of $Ugl(m+n)$ in the setting of quantum toroidal algebras and study the restrictions of various representations to this subalgebra.
In third paper of the series we construct a large family of representations of the quantum toroidal $gl_1$ algebra whose bases are parameterized by plane partitions with various boundary conditions and restrictions. We study the corresponding formal
characters. As an application we obtain a Gelfand-Zetlin type basis for a class of irreducible lowest weight $gl_infty$-modules.
The affine evaluation map is a surjective homomorphism from the quantum toroidal ${mathfrak {gl}}_n$ algebra ${mathcal E}_n(q_1,q_2,q_3)$ to the quantum affine algebra $U_qwidehat{mathfrak {gl}}_n$ at level $kappa$ completed with respect to the homog
eneous grading, where $q_2=q^2$ and $q_3^n=kappa^2$. We discuss ${mathcal E}_n(q_1,q_2,q_3)$ evaluation modules. We give highest weights of evaluation highest weight modules. We also obtain the decomposition of the evaluation Wakimoto module with respect to a Gelfand-Zeitlin type subalgebra of a completion of ${mathcal E}_n(q_1,q_2,q_3)$, which describes a deformation of the coset theory $widehat{mathfrak {gl}}_n/widehat{mathfrak {gl}}_{n-1}$.