ترغب بنشر مسار تعليمي؟ اضغط هنا

Implementation of an Optimised Cassegrain System for Radio Telescopes

44   0   0.0 ( 0 )
 نشر من قبل Christian Holler
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the antenna design for a radio interferometer, the Arcminute Microkelvin Imager, together with its beam pattern measurement. Our aim was to develop a low-cost system with high aperture efficiency and low ground-spill across the frequency range 12-18GHz. We use a modified cassegrain system consisting of a commercially-available paraboloidal primary mirror with a diameter of 3.7m, and a shaped secondary mirror. The secondary mirror is oversized with respect to a ray-optics design and has a surface that is bent towards the primary near its outer edge using a square term for the shaping. The antennas are simple to manufacture and therefore their cost is low. The design increased the antenna gain by approximately 10 per cent compared to a normal Cassegrain system while still maintaining low contamination from ground-spill and using a simple design for the horn.

قيم البحث

اقرأ أيضاً

Interferometric millimeter observations of the cosmic microwave background and clusters of galaxies with arcmin resolutions require antenna arrays with short spacings. Having all antennas co-mounted on a single steerable platform sets limits to the o verall weight. A 25 kg lightweight novel carbon-fiber design for a 1.2 m diameter Cassegrain antenna is presented. The finite element analysis predicts excellent structural behavior under gravity, wind and thermal load. The primary and secondary mirror surfaces are aluminum coated with a thin TiO$_2$ top layer for protection. A low beam sidelobe level is achieved with a Gaussian feed illumination pattern with edge taper, designed based on feedhorn antenna simulations and verified in a far field beam pattern measurement. A shielding baffle reduces inter-antenna coupling to below $sim$ -135 dB. The overall antenna efficiency, including a series of efficiency factors, is estimated to be around 60%, with major losses coming from the feed spillover and secondary blocking. With this new antenna, a detection rate of about 50 clusters per year is anticipated in a 13-element array operation.
The advent of international wideband communication by optical fibre has produced a revolution in communications and the use of the internet. Many African countries are now connected to undersea fibre linking them to other African countries and to oth er continents. Previously international communication was by microwave links through geostationary satellites. These are becoming redundant in some countries as optical fibre takes over, as this provides 1000 times the bandwidth of the satellite links. In the 1970s and 1980s some two dozen large (30 m diameter class) antennas were built in various African countries to provide the satellite links. Twenty six are currently known in 19 countries. As these antennas become redundant, the possibility exists to convert them for radio astronomy at a cost of roughly one tenth that of a new antenna of similar size. HartRAO, SKA Africa and the South African Department of Science and Technology (DST) have started exploring this possibility with some of the African countries.
Arrays of Cherenkov telescopes typically use multi-level trigger schemes to keep the rate of random triggers from the night sky background low. At a first stage, individual telescopes produce a trigger signal from the pixel information in the telesco pe camera. The final event trigger is then formed by combining trigger signals from several telescopes. In this poster, we present a possible scheme for the Cherenkov Telescope Array telescope trigger, which is based on the analog pulse information of the pixels in a telescope camera. Advanc
A future is an entity representing the result of an ongoing computation. A synchronisation with a get operation blocks the caller until the computation is over, to return the corresponding value. When a computation in charge of fulfilling a future de legates part of its processing to another task, mainstream languages return nested futures, and several get operations are needed to retrieve the computed value (we call such futures control-flow futures). Several approaches were proposed to tackle this issues: the forward construct, that allows the programmer to make delegation explicit and avoid nested futures, and data-flow explicit futures which natively collapse nested futures into plain futures. This paper supports the claim that data-flow explicit futures form a powerful set of language primitives, on top of which other approaches can be built. We prove the equivalence, in the context of data-flow explicit futures, between the forward construct and classical return from functions. The proof relies on a branching bisimulation between a program using forward and its return counterpart. This result allows language designers to consider forward as an optimisation directive rather than as a language primitive. Following the principles of the Godot system, we provide a library implementation of control-flow futures, based on data-flow explicit futures implemented in the compiler. This small library supports the claim that the implementation of classical futures based on data-flow ones is easier than the opposite. Our benchmarks show the viability of the approach from a performance point of view.
Astronomical widefield imaging of interferometric radio data is computationally expensive, especially for the large data volumes created by modern non-coplanar many-element arrays. We present a new widefield interferometric imager that uses the w-sta cking algorithm and can make use of the w-snapshot algorithm. The performance dependencies of CASAs w-projection and our new imager are analysed and analytical functions are derived that describe the required computing cost for both imagers. On data from the Murchison Widefield Array, we find our new method to be an order of magnitude faster than w-projection, as well as being capable of full-sky imaging at full resolution and with correct polarisation correction. We predict the computing costs for several other arrays and estimate that our imager is a factor of 2-12 faster, depending on the array configuration. We estimate the computing cost for imaging the low-frequency Square-Kilometre Array observations to be 60 PetaFLOPS with current techniques. We find that combining w-stacking with the w-snapshot algorithm does not significantly improve computing requirements over pure w-stacking. The source code of our new imager is publicly released.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا